Biodiversity knowledge synthesis: an introduction to meta-analyses and systematic reviews - Metacoding -

3/10/23 - Montpellier
Dakis-Yaoba Ouédraogo (PatriNat)

dakis-yaoba.ouedraogo@mnhn.fr

Metacoding

Describe/map the literature answering the question

- quantity
- nature
e.g. what populations are studied?
e.g. what types of intervention were studied?
e.g. what responses were measured?
+ how many studies for each category?
\rightarrow Identification of knowledge clusters
(future reviews / meta-analyses) and knowledge gaps

Systematic maps

Methodology developed by EPPI-Centre (social sciences)

RESEARCH REPORT

EPPI-Centre
A DESCRIPTIVE MAPPING OF HEALTH PROMOTION STUDIES IN YOUNG PEOPLE

Greet Peersman

Evidence for Policy and Practice Information and Co-ordinating Centre
© The Policy Press •2005 • ISSN 05474378

The politics of evidence and methodology:

lessons from the EPPI-Centre
Ann Oakley, David Gough, Sandy Oliver and James Thomas
These challenges of synthesising social science research have led over time to a number of pragmatic adaptations in the technology of systematic reviews. Building on the mapping report commissioned by the DH in 1996 (Peersman, 1996), EPPICentre reviews increasingly use a two-stage model of systematic reviews. In stage one, the relevant literature is located and described in order to provide a 'map' of research activity in the area. 'Mapping' the literature is a useful product in itself, and it also helps to counter the objection that too much literature is found and discarded. It also helps researchers and policy makers to see what kinds of questions the research can be used to answer. One implication of a two-stage model is that some reviews may consist simply of a mapping stage; for example, a map of research on the effects of travel on children as a scoping study for further research on children's travel to school (Gough et al, 2001). In the second stage of a review, a smaller subset of studies is used to answer a more focused question. Criteria used to select the smaller

Systematic maps

In environmental sciences:

Same rigour as for systematic reviews (protocol, etc.)

METHODOLOGY

Open Access
A methodology for systematic mapping in environmental sciences

Katy L. James ${ }^{1}$, Nicola P. Randall ${ }^{1 *}$ and Neal R. Haddaway ${ }^{2}$

Stage in 'evidence synthesis'	Systematic map	Systematic review
Objective	Describes the state of knowledge for a question or topic	Aims to answer questions with a quantitative or qualitative answer
Question formulation	Question can be open-framed or closed-framed. Topic can be broad or narrow	Question is usually closed-framed
Search strategy	No limitation on research evidence that can be included (e.g. primary and secondary research)	Evidence is limited to primary qualitative or quantitative research. For example comparative, prevalence or occurrence type studies
Article screening	Articles not obtainable at full text (where the full document is not available) or studies with limited data may be included	Article full text is usually required to extract relevant data
Data extraction	Information describing the study and its methods are extracted. Study results may not be extracted	Information describing the study and its methods and studies' qualitative and or quantitative results extracted
Critical appraisal	Critical appraisal optional	All included studies critically appraised for study internal and external validity
Synthesis	Trends in the literature, knowledge gaps and clusters identified but no'synthesis of study results' carried out	Qualitative or quantitative synthesis of study results where possible using appropriate methodology (e.g. meta-analysis). Knowledge gaps identified
Report	Describes and catalogues available evidence relating to a topic of interest, identifying knowledge gaps and knowledge clusters. Implications for policy, practice and research made	Narrative and qualitative or quantitative synthesis study results (e.g. meta-analysis) to answer the question (where feasible). Implications for policy and practice, and identification of knowledge gaps for future research

Systematic maps

Environmental Evidence

On-site communication measures as a tool in outdoor recreation management: a systematic

 mapCommunication is a central tool used to manage the balance between outdoor recreation and environmental protection in natural areas. Several studies have evaluated different communication measures in case stud...

Sofie Kjendlie Selvaag, Rose Keller, Øystein Aas, Vegard Gundersen and Frode Thomassen Singsaas

Environmental Evidence 2023 12:14
Systematic Map | Published on: 22 July 2023

What approaches exist to evaluate the effectiveness of UK-relevant natural flood management measures? A systematic map

This systematic map principally sought to understand the different forms of effectiveness that existing studies evaluate in relation to Natural Flood Management (NFM) in the UK with a supplementary question of...

Angela Connelly, Andrew Snow, Jeremy Carter, Jana Wendler, Rachel Lauwerijssen, Joseph Glentworth, Adam Barker, John Handley, Graham Haughton and James Rothwell

Environmental Evidence 2023 12:12
Systematic Map \quad Published on: 23 May 2023

Existing evidence on the impact of changes in marine ecosystem structure and functioning on ecosystem service delivery: a systematic map

The current biodiversity crisis underscores the urgent need for sustainable management of the human uses of nature. In the context of sustainability management, adopting the ecosystem service (ES) concept, i.e...

Carole Sylvie Campagne, Laurie-Anne Roy, Joseph Langridge, Joachim Claudet, Rémi Mongruel, Damien Beillouin and Éric Thiébaut

Environmental Evidence 2023 12:13
Systematic Map \mid Published on: 20 July 2023

What evidence exists on the impact of anthropogenic radiofrequency electromagnetic fields on animals and plants in the environment: a systematic map

Exposure to radiofrequency (RF) electromagnetic fields (EMF), particularly from telecommunications sources, is one of the most common and fastest growing anthropogenic factors on the environment. In many count...

Ken Karipidis, Chris Brzozek, Rohan Mate, Chhavi Raj Bhatt, Sarah Loughran and Andrew W Wood

Environmental Evidence 2023 12:9
Systematic Map | Published on: 11 May 2023

Systematic maps

SYSTEMATIC MAP
 How are biodiversity and dispersal of species affected by the management of roadsides? A systematic map

Claes Bernes ${ }^{1 *}$, James M. Bullock ${ }^{2}$, Simon Jakobsson ${ }^{3}$, Maj Rundlöf ${ }^{4}$, Kris Verheyen ${ }^{5}$ and Regina Lindborg ${ }^{3}$
 total abundance of vegetation).
(2) Measures of species dispersal along roads or roadsides, e.g. species distribution patterns or movement rates of
individuals or propagules. individuals or propagules.

Open Access

SYSTEMATIC REVIEW
Open Access
How does roadside vegetation management affect the diversity of vascular plants and invertebrates? A systematic review

Simon Jakobsson ${ }^{1 *}$ © , Claes Bernes ${ }^{2}$, James M. Bullock ${ }^{3}$, Kris Verheyen ${ }^{4}$ and Regina Lindborg ${ }^{1}$

Population:

Intervention within the habitats based on non-chemical vegetation removal such as mowing, grazing, burning, clearance of shrubs and saplings, coppicing, pruning, or mechanical removal of invasive plants.
Comparator:
Outcomes: non-intervention or alternative forms of the interventions measures of functional/taxonomic diversity (including abundance) of vascular plants or invertebrates.

Metacoding

Extraction of meta-data = extraction of information describing the study and its methods

Coding = process of assigning categories to each study for a series of variables describing the framework and design of the study
\rightarrow Define the study (an article may contain several studies)
\rightarrow Define the variables to be extracted/coded and the categories (code book)

Metacoding

Coding variable	Example of information that may be recorded
Full reference	Author(s), title, date, publisher
Year of publication	Date of publication in years
Publication type	Academic journal, book, conference paper or thesis
Language	Article language
Study country	Name of country
Linked study	Other articles reporting the same study
Data source	e.g. Primary or secondary research
Data type	e.g. Quantitative or qualitative
Study design	e.g. Experimental, quasi-experimental, observational, survey
Population(s)	e.g. Species, group
Intervention(s)	Type(s) of intervention investigated
Exposure(s)	Type(s) of exposure investigated
Comparator(s)	Type(s) of comparator used
Outcome(s) assessed	Types of outcome assessed
Sampling strategy	e.g. None specified, randomised, systematic
Length/period of study	e.g. Number of days, weeks, months, years or time period over which study was undertaken

Metacoding

! Warning !
Metacoding is time-consuming: trade-off between the amount of variables describing the study and the resources available to code.
\rightarrow What information is most relevant to the question?
Importance of testing the coding book on a sample of articles to check that it matches the content of the studies

Document the work (transparency, repeatability)
Decide what to do in case of missing information ("Not stated", contact the authors, complete via linked studies)

Coding book: example

Variables

	Column
Publication	Reviewer ID
	EPPIID
	Citation
	Authors
	Title
	Year
	Journal
	Pub Type
Mine description	Country
	Region
	Location
	Mine/project name
	Latitude
	Longitude
	Key metals/ore extracted
	Multiple metals list
	Type or mine
	Prospecting
	Exploration
	Construction
	Operation
	Decomissioning \& Closure
	Post-closure
	Remediation
	Abandonment
	Expansion
	Comment
Study decription	Study Design
	Study Design comments
	Comparator Type
	Study Setting
	Study Design context
System	Population (who/what is affected) Description
	Population System
	System affected
	Component affected
	Factor affected
Impact/Mitigation	Impacts?
	Impact pathway (what is impacting the population)
	Mitigation?
	Mitigation description
	Impact being mitigated
Outcome	Measured outcome
	Data Type
	Source of the information

Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social-ecological systems in Arctic and boreal regions: a systematic map

City, impacted site name, etc.
If not reported, retrieve external to paper based on closest available location or maps provided If not reported, retrieve external to paper based on closest available location or maps provided

Separate metas by semi colon (eg. Gold; Silver; Iron) e.g. open pit

Neal R. Haddaway ${ }^{12,3^{*} \oplus, ~ A d r i e n n e ~ S m i t h ~}{ }^{4}$, Jessica J. Taylor ${ }^{4}$, Christopher Andrews ${ }^{4}$, Steven J. Cooke ${ }^{4}$, Neal R. Haddaway
Annika E. Nilsson

Ty multiple selected in previous, List multiple metals extract
Type of mining activity, expand the drop-down as necessary
$\mathrm{Y} / \mathrm{N} / \mathrm{NR} / \mathrm{NS}$
$\mathrm{Y} / \mathrm{N} / \mathrm{NR} / \mathrm{Ns}$
Y/N/NR/NS
Y/NR/NS
Y/N/NR/NS
$\mathrm{Y} / \mathrm{N} / \mathrm{NR} / \mathrm{NS}$
Y/N/NR/Ns
$\mathrm{CI}, \mathrm{BA}, \mathrm{BACI}, \mathrm{RCT}$, correlative, other
Description of the comparator used in the study
In situ, mesocosm, ex situ
Authors description of the population/system being impacted is this a social, technological, or environmental Describe population/system impacted (See sheet Impact coding)
Follow coding based on system chosen (See sheet Impact coding) Follow coding based on system chosen (See sheet Impact coding) Does the study empirically investigate the impacts of mining? Author's short description of the impact
Does the study empirically investigate mitigation measures? $Y / / / /$ unclear Authors' short description of the mitigation measure
Name the impact Name the impact being mitigated Short destription from authors of the outcome measured
Page or table from which outcome meta data can be found

Dropdown/Meta-data	Example
Meta-data	
Meta-dat	
Meta-data	
Meta-data	
Meta-data	

Meta-data
Meta-data

Coding book: example

Categories

Codes	Notes	Codes	Notes and the e
Publication Type		Country	
Article	journal articles	Canada	measures
Thesis	thesis (Masters or PhD)	USA	Alaska only
Conf	conference proceeding	Greenland	
Book	book	Iceland	Neal R. Haddaway ${ }^{1 / 2,3}$
Book Chap	chapter in a book	Norway	including Svalbard Annika E. Nilsson ${ }^{5}$ and
Report	report (government, consultant)	Sweden	
Other/Unicear	e.g., news article, presentation etc.	Finland	
		Russia	
Key metals/ore extracted		The Faroe Islands	
Gold			
Iron		Type of mine	
Copper		Open pit	
Nickel		Strip mine	
Zinc		Quarry	
Silver		Underground mine	
Molybdenum		Surface mine	
Lead		Placer mine	
NR		Unclear	
Multiple		Expand as necessary	
Study design		Comparator Type	
BACI	Before-After-Control-Impact i.e.,	Same site/pop- Before	BA designs; no control site only before and after
BA	Before-after i.e., measured outcome	Reference site/population	Different unimpacted site/population; reference site;
Cl	Control-impact i.e., measures outcome	Control	Where there are only two possible outcomes, e.g. positive
RCT	Randomized Controlled Trial; A study	Background values	Impacted sites/populations are compared to standard or
Correlative	Statistical relationship between	No control	No comparator; after impact only or correlative
1/A only	No comparator; after impact only	BACI (reference/control/before/after)	
		Expand as necessary	
Study Setting			
Field	Experimental, descriptive field study	Study design context	
Field+Lab analysis	Field work done and samples analyzed	In situ	Situated in the original, natural, or existing place or
Lab Experiment	Including indoor/outdoor facilities/app	ex situ	Outside, off site, or away from the natural location. For
Lab Exp + Field test	Prototype studied in lab/facility and tes	mesocosm	Bounded and partially enclosed outdoor experiment
Lab analysis	Sample analysis only		
Modelling			
Social Science	Interviews, surveys		

Coding book: example

SYSTEMATIC MAP
Open Access
Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social-ecological systems in Arctic and boreal regions: a systematic map
Neal R. Haddaway ${ }^{12,3^{*} \oplus}$, Adrienne Smith ${ }^{4}$, Jessica J. Taylor ${ }^{4}$, Christopher Andrews, Steven J. Cooke ${ }^{4}$ Neal R. Haddaway ${ }^{120}$, Adrienne Smitite

Coding: in practice with Excel

Defining constrained cells / drop-down lists

Coding: in practice with Excel

Defining constrained cells / drop-down lists

Coding: in practice with Excel

Defining constrained cells / drop-down lists

Coding: in practice with Excel

Defining constrained cells / drop-down lists

Validation des données			? \times
Options	Message de saisie	Alerte d'erreur	
Critères de validation Autoriser :			
Liste $\quad \checkmark \square$ Ignorer sivide			
Données: \square Liste déroulante dans la ce			
compris	entre $\quad \checkmark$		
Source:			
			\pm
\square Appliquer ces modifications aux cellules de paramètres identiques			
Effacer to		OK	Annuler

Coding: in practice with Excel

Defining constrained cells / drop-down lists

Consistency check

To be sure that the metacoding is objective / robust:

- metacoding of each study carried out independently by 2 people
- if several coders share the work, check the consistency of the coding between coders on a sample before starting the actual coding (discuss any disagreements)
- if only 1 coder, have someone to check a sample of the coding at the start of the work (discuss any disagreements)

Question: What evidence exists on the impacts of chemicals on tropical reefbuilding corals?
P : all tropical reef-building coral species
E: all chemicals
C : comparison exposed / not exposed; before/after exposure; range of exposure
0 : all outcomes at all levels of organisation (molecular, colony, community)

A study $=\mathbf{a}$ taxon \times an exposure \times an outcome

Total amount of literature to code: 908 documents

Sample of 3 articles :
Dakis-Yaoba Ouédraogo * \odot, Mathilde Delaunay ${ }^{2}$, Romain Sordello ${ }^{2}$, Laetitia Hédouin ${ }^{3,4}$, Magalie Castelin ${ }^{5}$,
Olivier Perceval ${ }^{6}$, Isabelle Domart-Coulon ${ }^{7}$, Karen Burga ${ }^{8}$, Christine Ferrier-Pagès ${ }^{9}$, Romane Multon ${ }^{8}$,
Mireille M. M. Guillaume ${ }^{3,10}$, Clément Léger ${ }^{11}$, Christophe Calvayrac ${ }^{12,13}$, Pascale Joannot ${ }^{14}$ and Yorick Reyjol ${ }^{2}$

1 - Prepare the Excel sheet, define the variables to be extracted/coded and the categories (10 min)

2 - Metacoding of 1-3 articles (15 min)
3 - Discussion (10 min)

Variables to be extracted/coded

	Variable	Description	Value(s)													
Bibliographic information	map_ID	Unique identifier given by the review team to each study of the map	A code number													
	article_ID	Unique identifier given by the review team to each publication	A combinaison of number and letters													
	source	Source of the publication	Scopus \| WOS_CC	GS	CORE	GreenFile	Call_for_litterature	 CoralTraitDatabase \| ReefBase	Ecotox	IFRECOR	AIMS	IFREMER	ICRS \| ICRI	LabexCorail	OATD	theseFR
	author	Author(s) of the publication	Text													
	title	Title of the publication	Text													
	year	Year of publication	YYY													
	journal	Publication journal	Text													
	doi	DOI of the publication	Alphanumeric string of characters													
	language	Language of the publication	English \| French													
	document_type	Publication type	Journal_article \| Conf_proceedings	Book_chapter	PhD_thesis	MSc_thesis	BSc_thesis	Report								
People who coded	metacod_name	Initials of the names of the people who coded the studies	Text													

Variables to be extracted/coded

Study general description	study_ID	Unique identifier given by the review team to each study within an article or a thesis chapter		
	study_type	Type of study	Field_survey \| Field_experiment	Laboratory_experiment
	country	Name of the country or territory where the study was conducted for in situ study or where samples were collected for ex situ study	ISO 3166 english short name	
	region	Region of the country (according to Spalding et al. 2001)	Text	
	latitude	Latitude where the study was conducted for in situ study or where samples were collected for ex situ study	Number or alphanumeric string of characters	
	longitude	Longitude where the study was conducted for in situ study or where samples were collected for ex situ study	Number or alphanumeric string of characters	
	coord_unit	Units of latitude and longitude	Text	
	location	Location where the study was conducted for in situ study or where samples were collected for ex situ study (should be recorded when latitude and longitude are unknown)	Text	

Variables to be extracted/coded

Population description	taxon_init	Name of the taxon studied as described by authors	Text			
	taxon	Name of the taxon studied as updated by the review team. Taxon names were checked using the World Register of Marine Species (http://www.marinespecies.org/) and additional references. Please note that Dipsastraea* does not fully match Favia as some Favia species in the Indo-Pacific have been transferred to other genera such as for instance Goniastrea. Also, Pocillopora damicornis has been split into several species including Pocillopora acuta. Thus the name P. acuta appears in the database from 2019. The two names have been combined here for analysis purposes, as there were P. acuta in the past which were called P. damicornis. And, Fungia* includes other genus than Fungia such as Danafungia .	Text			
	taxonlevel	Level of the taxon studied. When a study is about a community (several species or genera or families studied together as a group), the taxon level encoded is the closest common level (e.g. if several species of the same genus are studied together, the "Genus" level is indicated; if several species of the same family are studied together, the "Family" level is indicated; if several scleractinian species are studied together, the "Order" level is indicated).	Species \| Genus	Family	Order	NA

Variables to be extracted/coded

General rules for coding:
If applicable, multiple values were delimited with a pipe I
NA was used as a substitute for missing data ("not available")
N/A means "non applicable"

Exposure description	exposure_raw	Type(s) of exposure as described by authors	Text														
	exposure	Type(s) of exposure as defined by the review team	Detergent \| Dispersant	Eutrophication	Hydrocarbon	Metal	Microplastic	Nanoparticle	Nutrient	Pesticide	Pharmaceutical	Undefined_pollutants	UV filter	Other			
	combined	Is the exposure combined with other exposures (e.g. other chemicals, other pressures)?	Yes \| No	Unknown	No/Unknown												
Outcome description	outcome_raw	Type(s) of outcome as described by authors	Text														
	outcome	Type(s) of outcome as defined by the review team	Bioaccumulation \| BioaccumulationF	Bleaching	Calcification	Coral_diversity	Cover	Disease	Distribution	Genetic	Growth	Microbiome	Mortality	Physiology	Recruitment	Reproduction	Other
	outcome_level	Level of organization concerned by the measured outcome	Community \| Colony	Individual	Tissue	Cellular	Molecular	Unknown									
	chemical_accumulated	For Accumulation and Bioaccumulation outcomes only, type(s) of chemica	Hydrocarbon \| Metal	Microplastic	Nanoparticle	Nutrient	Pesticide	Pharmaceutical	UV filter	Other	N/A						
Comments	metacod_comment	Comments (e.g. description of other pressures)	Text														
Linked studies	linked_study	Is the study linked with another one in the database?	No \| unique identifier for linked studies														
Knowledge cluster	cluster	Number of the knowledge cluster(s) to which the study belongs (see Figure	1\|2	3	4	$2 \& 4$ \| N/A											

Tang et al. 2021

1 species $\times 1$ exposure $\times 5$ outcomes $=5$ studies

metacod_name	study_ID	study_type	country	region	latitude	longitude	coord_unit	location
DYO	1	Laboratory_experiment	Taiwan, Province of China	Southeast Asia	NA	NA	NA	Kenting National Park
DYO	2	Laboratory_experiment	Taiwan, Province of China	Southeast Asia	NA	NA	NA	Kenting National Park
DYO	3	Laboratory_experiment	Taiwan, Province of China	Southeast Asia	NA	NA	NA	Kenting National Park
DYO	4	Laboratory_experiment	Taiwan, Province of China	Southeast Asia	NA	NA	NA	Kenting National Park
DYO	5	Laboratory_experiment	Taiwan, Province of China	Southeast Asia	NA	NA	NA	Kenting National Park

taxon_init	taxon	taxonlevel	exposure_raw	exposure	combined	outcome_raw	outcome	outcome_level	chemical_ac		linked_study
Seriatopora caliendrum	Seriatopora caliendrum	Species	Irgarol 1051	Pesticide	No	Effective and maximum quantum yield	Physiology	Colony	N/A	NA	NA
Seriatopora caliendrum	Seriatopora caliendrum	Species	Irgarol 1051	Pesticide	No	rETR	Physiology	Colony	N/A	NA	NA
Seriatopora caliendrum	Seriatopora caliendrum	Species	Irgarol 1051	Pesticide	No	Chl a content / symbiont	Physiology	Cellular	N/A	NA	NA
Seriatopora caliendrum	Seriatopora caliendrum	Species	Irgarol 1051	Pesticide	No	Oxidative condition of the coral (H 2 O 2 content, H 2 O 2 degradation activity, thiobarbituric acid-reacting substance content, lipid peroxidation, fat-soluble antioxidant capacity)	Physiology	Tissue	N/A	NA	NA
Seriatopora caliendrum	Seriatopora caliendrum	Species	Irgarol 1051	Pesticide	No	Symbiosome lipid profiles (glycerophosphocholine (GPC) profile)	Physiology	Cellular	N/A	NA	NA

Hédouin et al. 2016

1 species $\times 2$ exposures $\times 9$ outcomes $=18$ studies

metacod_name	study_ID	study_type	country	region	latitude	longitude	coord_unit	location
DYO	1	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	2	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97^{\prime \prime} \mathrm{N}$	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	3	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	4	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	5	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	6	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	7	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	egrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	8	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	9	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	10	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	11	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	12	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	13	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	14	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97^{\prime \prime} \mathrm{N}$	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	15	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97^{\prime \prime} \mathrm{N}$	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	16	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97^{\prime \prime} \mathrm{N}$	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	17	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97^{\prime \prime} \mathrm{N}$	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii
DYO	18	Laboratory_experiment	United States of America	Polynesia	$21^{\circ} 26^{\prime} 1.97$ "N	$157^{\circ} 47^{\prime} 20.10^{\prime \prime} \mathrm{W}$	degrees-minutes-seconds	Coconut Island, Oahu, Hawaii

Hédouin et al. 2016

1 species $\times 2$ exposures $\times 9$ outcomes $=18$ studies

taxon_init	taxon	taxonlevel	exposure_raw	exposure	combined	outcome_raw	outcome	outcome_level	chemical_ac	metacod_cor linked_study	
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Polyp contraction	Other	Individual	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Expulsion larvae	Reproduction	Colony	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Change in colour	Other	Colony	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Survival rate (adult, larvae)	Mortality	Colony	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Cu concentration in tissue	BioaccumulationF	Tissue	Metal	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Cu concentration in skeleton	BioaccumulationF	Colony	Metal	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Symbiodinium density	Microbiome	Tissue	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Chlorophyll a+c2 content	Physiology	Cellular	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Copper (Cu)	Metal	No	Fv/Fm (Maximum dark-adapted quantum yield of the photosystem II)	Physiology	Colony	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Polyp contraction	Other	Individual	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Expulsion larvae	Reproduction	Colony	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Change in colour	Other	Colony	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Survival rate (adult, larvae)	Mortality	Colony	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Pb concentration in tissue	BioaccumulationF	Tissue	Metal	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Pb concentration in skeleton	BioaccumulationF	Colony	Metal	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Symbiodinium density	Microbiome	Tissue	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Chlorophyll a+c2 content	Physiology	Cellular	N/A	NA	No
Pocillopora damicornis	Pocillopora damicornis	Species	Lead (Pb)	Metal	No	Fv/Fm (Maximum dark-adapted quantum yield of the photosystem II)	Physiology	Colony	N/A	NA	No

Kegler et al. 2015

1 species $\times[(2$ exposure $\times 4$ outcomes $)+(2$ exposure $\times 2$ outcomes $)]=12$ studies

metacod_name	study_ID	study_type	country	region	latitude	longitude	coord_unit	location
DYO	1	Laboratory_experiment	Indonesia	Southeast Asia	08 ${ }^{\circ} 20.259^{\prime} \mathrm{S} \mid 08^{\circ} 21.768^{\prime} \mathrm{S}$	116 ${ }^{\circ} 02.260^{\prime} \mathrm{E} \mid 116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	2	Laboratory_experiment	Indonesia	Southeast Asia	$08^{\circ} 20.259^{\prime} \mathrm{S} \mid 08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E}$ \| $116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	3	Laboratory_experiment	Indonesia	Southeast Asia	$08^{\circ} 20.259^{\prime} \mathrm{S} \mid 08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E} \mid 116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	4	Laboratory_experiment	Indonesia	Southeast Asia	08²0.259'S \| $08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E}$ \| $116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	5	Laboratory_experiment	Indonesia	Southeast Asia	$08^{\circ} 20.259^{\prime} \mathrm{S} \mid 08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E} \mid 116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	6	Laboratory_experiment	Indonesia	Southeast Asia	08²0.259'S \| $08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E}$ \| $116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	7	Laboratory_experiment	Indonesia	Southeast Asia	08 ${ }^{\circ} 20.259^{\prime} \mathrm{S} \mid 08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E} \mid 116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	8	Laboratory_experiment	Indonesia	Southeast Asia	08 ${ }^{\circ} 20.259^{\prime} \mathrm{S} \mid 08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E} \mid 116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	9	Laboratory_experiment	Indonesia	Southeast Asia	08 ${ }^{\circ} 20.259^{\prime} \mathrm{S} \mid 08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E} \mid 116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	10	Laboratory_experiment	Indonesia	Southeast Asia	08²0.259'S \| $08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E} \mid 116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	11	Laboratory_experiment	Indonesia	Southeast Asia	08²0.259'S \| $08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E}$ \| $116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok
DYO	12	Laboratory_experiment	Indonesia	Southeast Asia	$08^{\circ} 20.259^{\prime} \mathrm{S} \mid 08^{\circ} 21.768^{\prime} \mathrm{S}$	$116^{\circ} 02.260^{\prime} \mathrm{E}$ \| $116^{\circ} 01.897^{\prime} \mathrm{E}$	degrees-decimal minutes	Lombok

Kegler et al. 2015

1 espèce $\times[(2$ exposition $\times 4$ outcomes $)+(2$ exposition $\times 2$ outcomes $)]=12$ études

taxon_init	taxon	taxonlevel	exposure_raw	exposure	combined	outcome_raw	outcome	outcome_level	chemical_ac	metacod_comment	linked_study
Pocillopora verrucosa	Pocillopora verrucosa	Species	Diesel	Hydrocarbon	Yes	Respiration rates	Physiology	Colony	N/A	NA	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	Diesel	Hydrocarbon	Yes	Photosynthetic rates	Physiology	Colony	N/A	NA	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	Diesel	Hydrocarbon	Yes	Maximum quantum yield (Fv/Fm)	Physiology	Colony	N/A	NA	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	Diesel	Hydrocarbon	Yes	\% tissue loss	Mortality	Colony	N/A	NA	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	Diesel	Hydrocarbon	Yes	Respiration rates	Physiology	Colony	N/A	Combined with temperature	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	Diesel	Hydrocarbon	Yes	Photosynthetic rates	Physiology	Colony	N/A	Combined with temperature	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	Diesel	Hydrocarbon	Yes	Maximum quantum yield (Fv/Fm)	Physiology	Colony	N/A	Combined with temperature	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	Diesel	Hydrocarbon	Yes	\% tissue loss	Mortality	Colony	N/A	Combined with temperature	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	surfactant LAS (linear alkylbenzene sulfonate)	Detergent	No	Maximum quantum yield (Fv/Fm)	Physiology	Colony	N/A	NA	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	surfactant LAS (linear alkylbenzene sulfonate)	Detergent	No	\% tissue loss	Mortality	Colony	N/A	NA	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	surfactant LAS (linear alkylbenzene sulfonate)	Detergent	Yes	Maximum quantum yield (Fv/Fm)	Physiology	Colony	N/A	Combined with temperature	No
Pocillopora verrucosa	Pocillopora verrucosa	Species	surfactant LAS (linear alkylbenzene sulfonate)	Detergent	Yes	\% tissue loss	Mortality	Colony	N/A	Combined with temperature	No

