

Critical appraisal

Joseph LANGRIDGE joseph.langridge@fondationbiodiversite.fr

Membres Fondateurs de la FRB :

cirad

LVMH

CESAB CENTRE DE SYNTHÈSE ET D'ANALYSE SUR LA BIODIVERSITÉ

Screening for relevance

Comparing systematic methods

Systematic review

CESAB CENTRE DE SYNTHÈSE ET D'ANALYSE UR LA BIODIVERSITI

Systematic mapping

- Narrative
- Quantitative (meta-analysis)

descriptive

CESAB CENTRE DE SYNTHÉSE ET D'ANALYSE SUR LA BIODIVERSITÉ

Steps taken

4

Adapted from Bilotta et al. 2014. Environmental Science & Policy. https://doi.org/10.1016/j.envsci.2014.05.010

• It is rare to find scientific publications that are TRUE REPLICATES of an initial observation or experiment. Research funding and scientific publishing encourage innovation, not verification by replication.

• It is rare to have the means and the time to carry out 'perfect' research, and all the more so when you are 'in the field' and not under controlled conditions...

ESAB

- Critical appraisal is carried out after the various screening stages: on the **final corpus**.
 - ✓ We now know all the articles that deal with the given question (PICO/PECO).
- (Critical appraisal is carried out in a systematic review but not in a systematic map.)
- Thus, critical appraisal focuses on the quality validity of the studies.
- Critical appraisal is generally carried out on studies / study units (prior breakdown of "articles" ==> "study units")
 - ✓ It is possible to group together several studies from the same publication if their experimental protocol is the same

Why do a criticial appraisal?

Extract the values (or direction of effect) from the results/outcomes obtained (whether they are significant or not)

	Comparison code	Biblio	Biblio author(s)	Biblio Year	Biblio title	Outcome1	Outcome2
	•	ID 🎴	· · · · · · · · · · · · · · · · · · ·	-	•		
4	Leski_2019_1	35	Leski, T; Rudawska, N	2019	Both forest reserves and ma	Increase	28.9
В	Petzold_2018_1	268	Petzold, J; Dittrich, S	2018	Effects of forest management	Increase	4.63
	Baran_2018_1	151	Baran, J; Pielech, R; I	2018	No difference in plant speci	No effect	2
	Horvat_2017_1	302	Horvat, V; Heras, P; (2017	Intensive forest management	Increase	11.41
F	Dvorak_2017_1	345	Dvorak, D; Vasutova,	2017	Macrofungal diversity patter	Increase	16.07
	Horvat_2017b_1	370	Horvat, V; Biurrun, I;	2017	Herb layer in silver fir - beed	Increase	26.84

7

Error Vs. Bias

• **Random error** = imprecise (false) measurement/observation due to an accident (chance) or a temporary defect. **Unintentional.**

If measures are repeated, a good chance that it **will not be** reproduced.

• **Bias = systematic error.** It is not erased by repetition and distorts reality. It can sometimes be "voluntary".

If systematic error is known but not controlled. Leading to an incorrect answer.

Frampton, et al. 2022. Environmental Evidence. <u>https://doi.org/10.1186/s13750-022-00264-0</u> Konno et al. 2024. Environmental Evidence. <u>https://doi.org/10.1186/s13750-024-00324-7</u>

INSECT POPULATIONS

Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances

Roel van Klink^{1,2,3*}, Diana E. Bowler^{1,4,5}, Konstantin B. Gongalsky^{6,7}, Ann B. Swengel⁸, Alessandro Gentile¹, Jonathan M. Chase^{1,9}

Comment on "Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances"

Marion Desquilbet¹*†, Laurence Gaume²†, Manuela Grippa³, Régis Céréghino⁴, Jean-François Humbert⁵, Jean-Marc Bonmatin⁶, Pierre-André Cornillon⁷, Dirk Maes⁸, Hans Van Dyck⁹, David Goulson¹⁰

https://www.science.org/doi/10.1126/science.abd8947

- No attempt was made to weight studies
- Confounding factors
 - geographic location,
 - anthropogenic impact (including farming methods and pesticide use),
 - protected status

9

10

CESAB

CENTRE DE SYNTHÈSE ET D'ANALYSE SUR LA BIODIVERSITÉ

Reliability and replicability of evidence reviews

(Pullin et al. 2022. Environmental Evidence. https://doi.org/10.1186/s13750-022-00269-9)

Vote counting

Why is vote-counting problematic?

Vote counting is statistically flawed because it provides only limited information about study outcomes (Gurevitch, J. *et al.* 2018. *Nature*. <u>https://doi.org/10.1038/nature25753</u>)

Statistical Power:

- is the probability of detecting an effect (where there is a true effect present)
- is a function of the estimated population **effect size**, the **Type I error rate** (i.e. probability of concluding that there is an effect of an intervention when there is no true relationship), and **sample size**.

Precision:

- Vote-counting does not weigh by precision. Each study is given a single "vote" in the analysis. From sampling theory, we know that smaller samples are more likely to be further away from the population mean (Combs et al. 2011).
- A study with a sample size of 100 would be treated the same (i.e. as a single vote) as a study with a sample size of 5 in a vote-count. This is absurd !

Validity

12

- Vote-counting treats all studies as being equally valid but this is unrealistic
- because different study designs can vary in their reliability (Haddaway 2017)

Grainger et al. 2022. Why "vote-counting" is never acceptable in evidence synthesis. Pre-print. https://doi.org/10.31219/osf.io/c49uh

Applying critical appraisal with the FEAT principles

Four basic principles of critical appraisal

Focused on an appropriate and specific validity construct (i.e. internal validity or external validity).

Extensive, capturing all aspects of the validity construct (i.e. if the construct is internal validity all the different types of bias that could arise in a given study design must be identified and assessed).

<u>Applied</u> – to inform the data synthesis step of the evidence synthesis in an appropriate way.

Transparent - to maximise objectivity and clarity.

Intervention and control (C-I) sites are identical except variable of interest

Vs.

Site type Gross successional stages Sampling design / comparator

FSAB

SUR LA BIODIVERSITÉ

POUR LA RECHERCH

CENTRE DE SYNTHÈSE ET D'ANALYSE

Yang et al. 2020. *Scientific reports*. https://doi.org/10.1038/s41598-020-73496-0

Principle:

(16)

Langridge et al. 2023. Biological Conservation. https://doi.org/10.1016/j.biocon.2023.110296

G, gap; R, regeneration; E, establishment; EO, early optimum; MO, mid-optimum; LO, late optimum; P, plenter; T, terminal; D, decay

Hilmers et al. 2018. *Journal of Applied Ecology*. https://doi.org/10.1111/1365-2664.13238

Respecting successional stages

mid managed vs mid unmanaged "Gross successional" stages

Sampling design / comparator

Langridge et al. 2023. Biological Conservation. https://doi.org/10.1016/j.biocon.2023.110296

Introducing CEE Critical Appraisal Tool

CENTRE DE SYNTHÈSE ET D'ANALYSE SUR LA BIODIVERSITI

CEE : Critical Appraisal Tool

Collaboration for Environmental ABOUT US V **RESOURCES FOR AUTHORS** ~ EVENTS ~ SERVICES FOR EVIDENCE USERS ~ WORKING GROUPS Q Evidence CEE CRITICAL APPRAISAL TOOL **CEE** Critical Appraisal Tool Collaboration for Environmental Evidence Critical Resources for Authors Appraisal Tool Version 0.3 (Prototype) Guidelines for Authors Aims and Scope Table of Contents Last updated: 24 October 2021 Updates and Corrections PROJECT SUMMARY 1. Process Summary We are currently developing a critical appraisal tool for evaluating 'risk of bias' (or threats to internal 2. Need for Evidence, Synthesis Type and validity) of primary studies assessing effectiveness of interventions or impacts of exposures in Review Team environmental management. There are well-known, widely applied risk of bias assessment tools in 3. Planning a CEE Evidence Synthesis the health sector known as 'RoB 2' and 'ROBINS-I' (www.riskofbias.info), but there are currently no such critical appraisal tools in environmental management. Here we provide a third draft of the tool. 4. Writing and Registering a Protocol The tool is still under development and requires initial testing, but it may help environmental 5. Conducting a Search evidence synthesists conduct critical appraisal. In the latest version, more descriptions are provided 6. Eligibility Screening in Part A, and revisions and clarifications are made in Part B. We have merged two risk-of-bias criteria and so the total number of risk-of-bias criteria is reduced to seven in version 0.3. 7. Data Coding and Data Extraction 8. Critical appraisal of study validity (SRs) If you are not familiar with critical appraisal step, we recommend reading Sections 3.5 (www.environmentalevidence.org/guidelines/section-3) and 8

(www.environmentalevidence.org/guidelines/section-8) of CEE Guidelines before you download the

9. Data Synthesis

10 Interpreting findings and reporting

Scope of tool

Within the scope

Beyond the scope

If all of the followings apply If any of the followings applies Review question justifiably relates to environmental management (policy or practice)

Reviewing evidence on impact of exposure or effectiveness of intervention

Interest is quantitatively measured outcomes

Reviewing medical research involving human subjects, tissues, or personal data (including physiological, biomechanical, psychological research)

Reviewing purely laboratory-based biological research (e.g., in vitro or in vivo experiments, genome sequencing)

Reviewing qualitative evidence

CESAB CENTRE DE SYNTHÈSE ET D'ANALYSE SUR LA BIODIVERSITÉ

Assumptions of the tool

- ✓ The tool does not assume that study types are biased.
- ✓ The tool does not assume the differences in study design alone affect precision.

Organisational Schema for Errors

Relevant criteria

Structural error: bias relating to measurement of intervention, exposure or outcome, and bias relating to exchangeability. Exchangeability refers to independence between the outcome and the observed intervention.

23

CESAB CENTRE DE SYNTHÈSE ET D'ANALYSE SUR LA BIODIVERSITÉ

Internal validity: what should I check?

Risk of bias class	Summary					
1. Bias due to confounding factors	"Risk of confounding biases" in the CEE tool. These biases arise due to one or more uncontrolled variables (confounders) that influence both the exposure and the outcome.					
2. Bias in selection of subjects/areas into the study	"Risk of post-intervention/exposure selection biases" in the CEE tool. These biases arise when some eligible subjects are excluded in a way that leads to a false association between the exposure and outcome.					
2a. Bias due to missing data (attrition bias)	Bias due to <u>missing data</u> can be considered as a type of selection bias; "Risk of post-intervention/exposure selection biases" (i.e. bias class 2 above). This can arise when follow up data of subjects - that are initially included in the study - are not fully available for inclusion in the analysis. Thus, an imbalance in the amount of missing data between the exposure and comparator groups (differential missingness)					
3. Bias due to misclassification of the exposure	"Risk of misclassified comparison biases" in the CEE tool. These biases arise from misclassification or mismeasurement of the exposure and/or comparator which leads to a misrepresentation of the association between the exposure and the outcome (also known as measurement bias or information bias).					

4. Bias due to deviation from the "Risk of performance biases" in the CEE tool. These biases arise from <u>alteration</u> of planned exposure (intervention) the planned exposure or comparator treatment procedure(s) of interest after the start of the exposure.

Frampton, et al. 2022. *Environmental Evidence*. <u>https://doi.org/10.1186/s13750-022-00264-0</u> Konno *et al.* 2024. *Environmental Evidence*. <u>https://doi.org/10.1186/s13750-024-00324-7</u>

CESAB CENTRE DE SYNTHÈSE ET D'ANALYSE

SUR LA BIODIVERSITÉ

Internal validity: what should I check?

Risk of bias class	Summary						
5. Bias in measurement of outcomes	"Risk of detection biases" in the CEE tool. This can arise from systematic differences in measurements of outcomes (also known as <u>measurement bias</u>). Systematic errors in measurement of outcomes may occur if outcome data are determined differently between the exposure and comparator groups. This could be intentional (e.g. influence of desire to obtain a certain direction of effect) or unintentional (e.g. due to cognitive bias or human errors).						
6. Bias in selection of the reported results	"Risk of outcome reporting biases" in the CEE tool. These are biases arising from selective reporting of study findings. Selective reporting may appear at three different levels: (i) presentation of selected findings from multiple measurements; (ii) presentation of results for selected subgroups or subpopulations of the planned analysis population; and (iii) presentation of selective findings from multiple analyses.						
7. Bias due to an inappropriate statistical analysis approach	 "Risk of outcome assessment biases" in the CEE tool. These are due to errors in statistical methods applied within the individual studies included in a systematic review. Four main areas: (i) data analysts' awareness of the exposure or comparator received by study subjects or areas (blinding of data analysts could mitigate the risk of bias); (ii) errors in applied descriptive statistics (e.g. miscalculation of sample sizes, means, or variances, including pseudoreplication); (iii) errors in applied inferential statistics (including flawed null hypothesis testing, estimation, or coding); (iv) use of inappropriate statistical tests or violation of assumptions required by tests (e.g. criteria for normality and equal variances are not satisfied) 						

Example: Criterion 1

Risk of Confounding Biases

Understand the effect of salomon denisty on their survival?

Presence of predators 2 affect rate of survival (O) thus density (I/E).

Example: Criterion 1

Risk of Confounding Biases

Need to understand variability

e.g. morphological differences (covariate) may explain the effect

Stratified sampling Divided into subpopulations

Example: Criterion 1

Risk of Confounding Biases

- 1.1. Is confounding possible?
- 1.2. Are the potential confounders controlled for?

1.3. Is there any justification for not controlling for the potential confounders?

1.4. Are the potential confounders likely to be measured accurately and precisely?

1.5. Are the analyses of the effect appropriate?

Decisions trees for each criterion

Criterion 1: Risk of confounding blases										
Category	Checklist questions	Response option	Answer							
		Yes								
General (please answer)	1.1. Is it possible for the impact of the exposure or the effectiveness of the intervention to be confounded in	Seemingly yes								
	this study?	Seemingly no								
		No								
		Yes								
		Seemingly yes								
Conditional (answer if Y/SY to 1.1,	1.2. Did the author(s) control for all the potential confounders?	Seemingly no								
otherwise select 'Not applicable')		No								
		Unclear (No)								
		Not applicable								
		Yes								
Conditional (answer if N/SN/Unclear	1.2. In these any justifiable reason for not controlling for all the extential confounders (so that emission of	Seemingly yes								
to 1.2, otherwise select 'Not	some of the potential confounders is unlikely to influence the assessment of the effectiveness or impact)?	Seemingly no								
applicable.)		No								
		Not applicable								
Citation Crite	rion1 Criterion2 Criterion3 Criterion4 Criterion5 Criterion6 Crite	rion7 Overall All_decisions	(+)							

Konno K, Livoreil B, Pullin AS. 2021. Collaboration for Environmental Evidence Critical Appraisal Tool version 0.3. <u>https://environmentalevidence.org/cee-critical-appraisal-tool/</u>

How to carry it out?

Quinard *et al.* The effectiveness of existing solutions to mitigate impacts of onshore wind farms on flying vertebrates and invertebrates: a Rapid review. *Environmental evidence*. [in prep]

Type of comparative study desgin	Illustrated	Other examples of comparative study designs			
Raising cut-in speed threshold	Wind speed in m/s : higher cut-in speed	Wind speed in m/s : lower cut-in speed	 Targeted cut-in speed Feathering Cut-in speed and simultaneous acoustic deterrence 		
Acoustic deterrence		T	 Radar deterrence UV light deterrence Radar and acoustic deterrence simultaneously 		
Turbine size		[XX] m	Repowering		
Surface painting (including the blades)		AT A	Surface aspect		
Micro-siting			 Macro-siting Elimination of attraction factors Elimination of attraction factors: light 		

30

Quinard *et al.* The effectiveness of existing solutions to mitigate impacts of onshore wind farms on flying vertebrates and invertebrates: A Rapid Review. [in prep]

Risque de biais	Question	Low	High	Medium	Unclear or unknown
Internal validity bias	Does the intervention measure take place <i>in situ</i> (on a site equipped with wind turbines)?	Yes, or presumably yes	No (<i>ex-situ</i> studies), or presumably no	NA	Unclear or Unknown
Confounding factors bias	Are there any potential confounding factors (cf. sheet 2) that could influence the intervention and/or the outcome? If so, have the authors identified, analyzed/controlled, and taken them into account in their analysis?	No, or presumably no	Yes, or presumably yes	Yes, but poorly controlled for	Unclear or Unknown
Misclassified comparison bias (only observational)	Are the exposure/intervention and comparison groups sufficiently well defined?	Yes	No, or presumably no	NA	Unclear or Unknown

Quinard *et al.* The effectiveness of existing solutions to mitigate impacts of onshore wind farms on flying vertebrates and invertebrates: A Rapid Review. [in prep]

				Validité externe	Facteurs confondants	Sélection post-exposition		Classement incorrect (uniquement études observationnelles)	Performance (uniquement études expérimentales)				
				L'exposition/ intervention a-t-elle lieu in-situ (sur site équipé d'éoliennes)?	Existe-t-il de potentiels facteurs confondants (voir feuille 2) pouvant influencer l'intervention et/ou le résultat ? Si oui, les auteurs les ont-ils identifié, puis analysé/contrôlé, et les ont-ils pris en compte dans leur analyse ?	La sélection des sujets ou des zones après l'intervention ou l'exposition était-elle aléatoire ou systématique, et pourrait-on supposer l'interchangeabilit é entre les groupes avant et après?	Le groupe assigné aux sujets ou aux zones (type d'intervention/con trôle) était-il caché aux expérimentateurs ?	Y avait-il un nombre différent de données manquantes entre les groupes exposés et les groupes témoins pendant l'étude ou l'analyse ?	Les groupes d'exposition/interv ention et de comparaison sont-ils suffisamment bien définis ?	Y a-t-il eu des modifications des traitements d'intervention/exp osition ou de contrôle d'intérêt qui pourraient avoir un impact sur l'efficacité de l'intervention ou l'impact de l'exposition ?	Les tailles d'échantillon de ces traitements altérés étaient-ils déséquilibrés entre les groupes d'intervention ou d'exposition ou ces traitements altérés étaient-ils pris en compte de façon incorrecte, ce qui pourrait avoir pourrait avoir influencé l'estimation de l'impact ou de l'efficacité ?	Dans le cas d'une évaluation de la mortalité, un test de persistance correction) a-t-il été réalisé ? si oui, prend-il en compte carcasses, les mesures pour chaque turbine séparémment ? De même, un test de détection avec un contrôle pour les différences spécifiques au site a-t-il été réalisé ?	La variation de l'efficacité entre les observateurs et au fil du temps (facteur de correction) a-t-elle était évaluée et utilisée?
Article		Evaluateur	CrossCheck										
May_2017	Do birds in flig	AQ		High	Low	NA	NA	Unknown	NA	Low	NA	NA	NA
Cooper_2020	Bat impact min	AQ	LD	Low	High	Low	Unknown	Unknown	NA	High	High	Medium	Unknown
Smales_2013	The aversive of	AQ		LOW	LOW	NA	NA Low	NA	NA	NA Low	NA	NA	Unknown
Percador 2019	Effectiveness of	Dre-tect		Low	Medium	Unknown	Low	Unknown	NA	Low	NA	Linknown	Unknown
Rienz 2016	Surface texture	40		High	High	Low	High	Unknown	NA	Low	NA	NA	NA
Smallwood 2020	Effects of wind	40	н	Low	Medium	Unknown	Unknown	Unknown	NA	Low	NA	Low	Unknown
Gorresen 2015	Dim ultraviolet	Test		High	Low	Low	Unknown	Low	NA	Low	NA	NA	NA
Stokke 2020	Effect of tower	AQ	LD	Low	Low	Unknown	High	Unknown	NA	Low	NA	High	High
Ferri 2016	Bats in a medit	AQ		Low	Low	Unknown	Low	Unknown	NA	Low	NA	NA	NA
Weaver 2020	Ultrasonic acou	AQ	JL	Low	Medium	Low	Unknown	High	NA	High	High	Medium	High
	•	+						-		-	-		-

About

Available TOOLS

l₹ **Checklist for Systematic Reviews**

How to cite

(COPY) Aromataris E, Fernandez R, Godfrey C, Holly C, Kahlil H, Tungpunkom P. Summarizing systematic reviews: methodological development, conduct and reporting of an Umbrella review approach. Int J Evid Based Healthc. 2015;13(3):132-40.

Associated publication(s)

33

JBI Manual for Evidence Synthesis Chapter 10: Umbrella Reviews

https://jbi.global/critical-appraisal-tools

Appraisal Tool Version 0.3 (Prototype)

https://environmentalevidence.org/ceecritical-appraisal-tool/

Campbell Collaboration The Campbell Collaboration is an international research network that produces systematic reviews of the effects of social interventions in Crime & Justice, Education, International Development, and Social Welfare. **Critical Appraisal Skills Programme** 59 Lakeside Oxford OX2 8JQ Critical Appraisal info@casp-uk.net **6 🖸 🗠**

https://casp-uk.net/casp-tools-checklists/