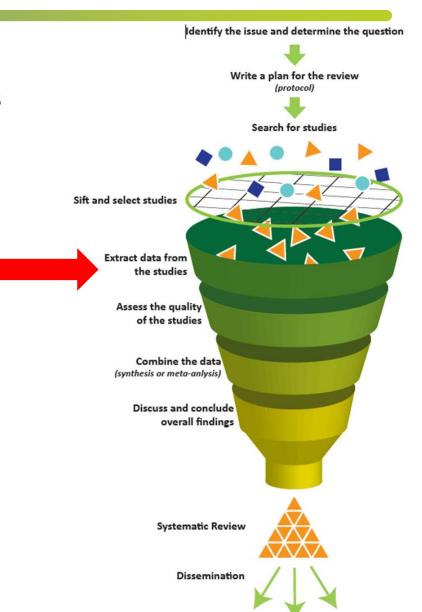


Biodiversity knowledge synthesis: an introduction to meta-analyses and systematic reviews

Quantitative data extraction

October 2024 - Montpellier

Dakis-Yaoba Ouédraogo (PhD) dakis.ouedraogo@gmail.com


Extraction of quantitative data

Extraction of the data needed to calculate effect sizes (e.g. mean, sample size, sd/se/95% CI)

+ extraction of variables that could explain the heterogeneity of effect sizes (*effect modifiers*)

Extraction from

- text
- table
- figure
- supp. mat.
- + calculations may be needed (keep a record)

Extraction of quantitative data

! Warning!

Data extraction is time-consuming: clearly define the extraction grid and the effect modifiers to be extracted

Importance of **testing** the extraction sheet on a sample of articles to check that it matches the content of the studies

Document the work/decisions (transparency, repeatability)

Decide what to do in case of **missing information** ("missing data", contact the authors, imputation)

Recovering Missing or Partial Data from Studies:
A Survey of Conversions and Imputations for Meta-analysis

Marc J. Lajeumesse

Consistency check

To be sure that data extraction is objective / robust:

- Data extraction of each study carried out independently by 2 people
- if several people share the work, **check the consistency of data extraction** between people on a sample before starting the actual extraction (discuss any disagreements)
- if only 1 person, have someone to check a sample of the extracted data at the start of the work (discuss any disagreements)

Example of extraction sheet

A study = a taxon \times an exposure \times an outcome

Case study level: ex. several concentrations of a chemical

IDdata	ID_map author taxon		Population_descri	Life_stage	Type_system	Tempera pl		
ScreenTA_9680	880	Cantin, N.E	 Acropora tenuis	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	880	Cantin, N.E	 Acropora tenuis	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	884	Cantin, N.E	 Acropora valida	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	884	Cantin, N.E	 Acropora valida	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	889	Cantin, N.E	 Pocillopora damicornis	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	889	Cantin, N.E	 Pocillopora damicornis	Colonies	Adult	500 L outdoor tank	27.5	NA

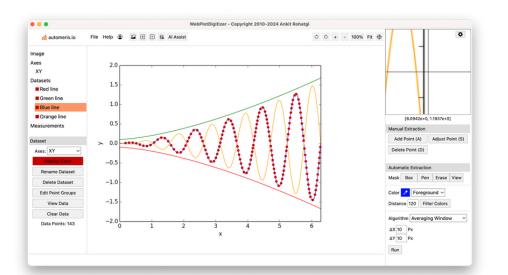
Treatment_description	Control_description	Solvent	Concentration_nom	Concentration_eff	Duration	Measured_variable	Time_after
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	53 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	53 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	90 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	90 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	67 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	67 days	Symbiodinium density / total protein	NA

Example of extraction sheet

Treatment_description	Control_description	Solvent	Concentration_nom	Concentration_eff	Duration	Measured_variable	Time_after
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	53 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	53 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	90 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	90 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	67 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	67 days	Symbiodinium density / total protein	NA

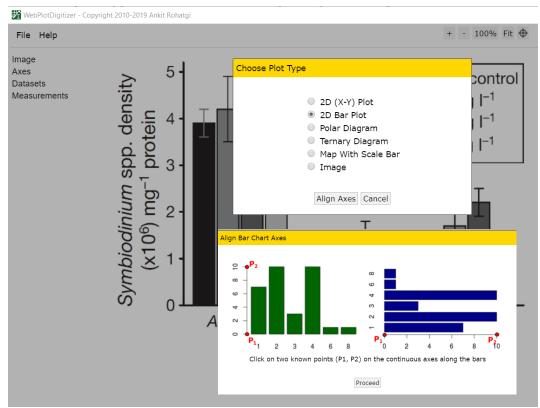
Metaanalyse_data	unit	ID_experiment	ID_case	ID_cc	mmon_control	N_c	Mean_c	Type_variation_c	Variation_c	N_t	Mean_t	Type_variation_t	Variation_t
OK (Fig3, SE, n=6)	x 10^6 / mg protein	1	3	1		6	4.2	sd	1.714642819	6	3.514285	sd	0.979795897
OK (Fig3, SE, n=6)	x 10^6 / mg protein	1	4	1		6	4.2	sd	1.714642819	6	3.6	sd	0.524890659
OK (Fig3, SE, n=6)	x 10^6 / mg protein	2	7	2		6	0.928571	sd	0.45490523	6	1.414285	sd	0.979795897
OK (Fig3, SE, n=6)	x 10^6 / mg protein	2	8	2		6	0.928571	sd	0.45490523	6	1.314285	sd	0.699854212
OK (Fig3, SE, n=6)	x 10^6 / mg protein	3	11	3		6	1.714285	sd	0.699854212	6	2.228571	sd	0.699854212
OK (Fig3, SE, n=6)	x 10^6 / mg protein	3	12	3		6	1.714285	sd	0.699854212	6	0.914285	sd	0.244948974
													'

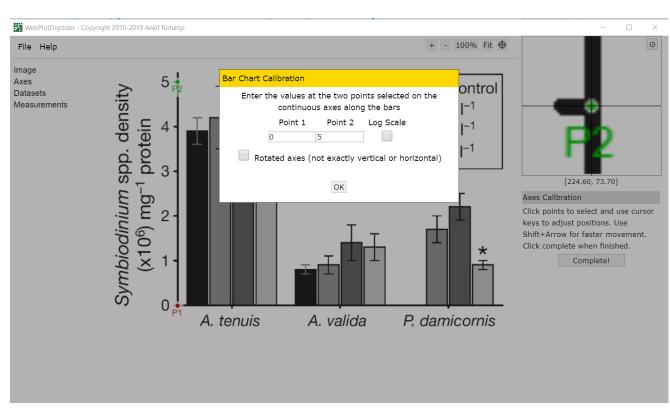
Method_extraction	Source	Comment_extract	Name_data_extraction
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO

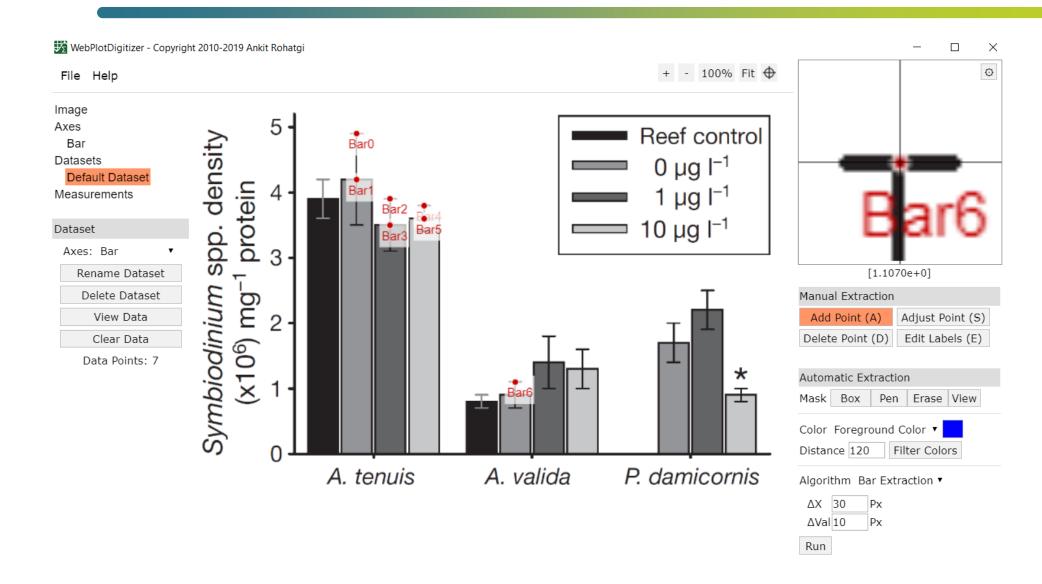

WebPlotDigitizer https://automeris.io/WebPlotDigitizer/

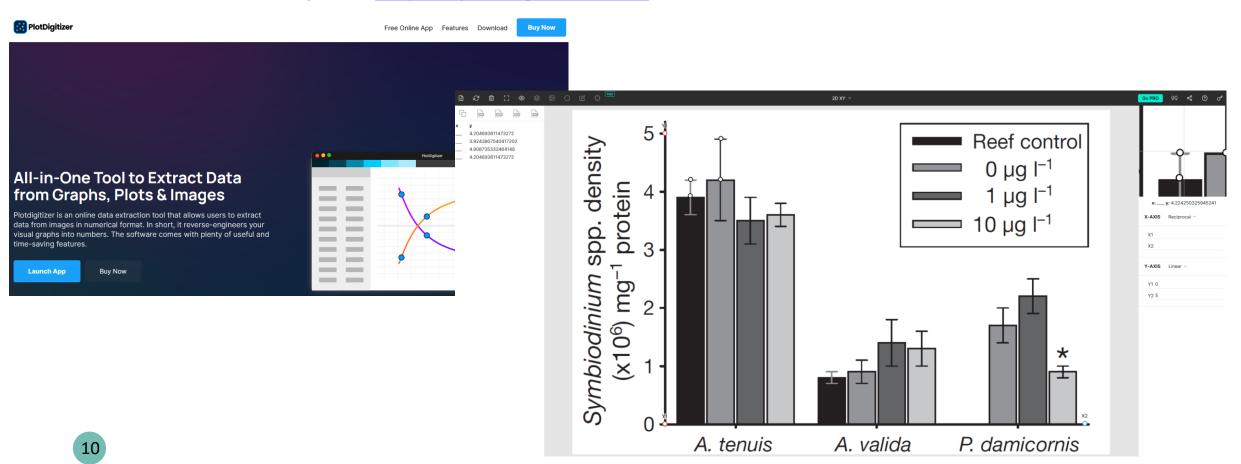
Extract data from charts

A large quantity of useful data is locked away in images of data visualizations. WebPlotDigitizer is a computer vision assisted software that helps extract numerical data from images of a variety of data visualizations.

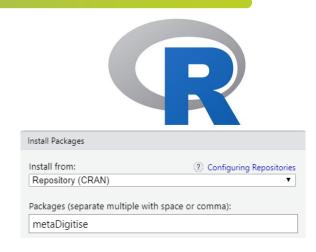

Launch v5
Learn more about the latest version (v5)
Access archived v4







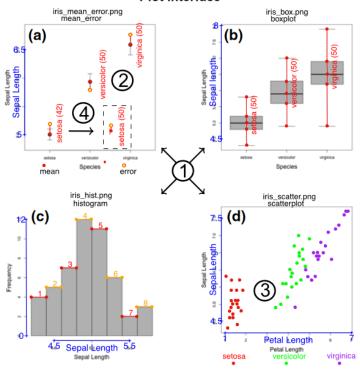
Plotdigitizer https://plotdigitizer.com/



Reproducible, flexible and high-throughput data extraction from primary literature: The METADIGITISE R package

Joel L. Pick D | Shinichi Nakagawa | Daniel W. A. Noble D

- (+) possible to save, trace and modify data extraction
- (-) no zoom


https://cran.r-project.org/web/packages/metaDigitise/vignettes/metaDigitise.html

metaDigitise

Plot interface

(6) filename variable group_id mean iris_box.png Sepal length 0.317 50setosa iris_box.png Sepal length versicolor 5.93iris_box.png Sepal length 6.49NA virginica iris_hist.png Sepal Length 50 NAiris_mean_error.png 5.010.680 50 NASepal Length setosa iris_mean_error.png Sepal Length versicolor 5.941.025 50 NA iris_mean_error.png Sepal Length virginica iris_scatter.png Petal Length setosa 1.44 0.215 20 0.109 iris_scatter.png Sepal Length 5.03 0.427 20 0.109 scatterplot setosa

Petal Length versicolor

iris_scatter.png

iris_scatter.png

iris_scatter.png

Data output

4.29

Sepal Length versicolor 5.97 0.603 20 0.786 scatterplot

Petal Length virginica 5.66 0.668 20 0.932 scatterplot

FUNCTIONALITY

(1) Different plot types

Capable of handling A) mean error plots, B) boxplots, C) histograms and D) scatterplots

(2) Entry of Metadata

Enter sample sizes variable and group names while digitising that are displayed on plot

(3) Grouped Data

Enter as many groups as needed to capture descriptive statistics for sub-samples of data

(4) Digitise, edit or replot digitisations

Simple user interface to guide user. Can digitise new images, edit digitisations or easily replot previous digitisations and metadata by cycling through images or choosing specific images

(5) Summarising data

Get descriptive statistics automatically calculated for all plot types or use raw x,y data, if desired

(6) Multiple image processing

plot_type

boxplot

boxplot

boxplot

histogram

mean_error

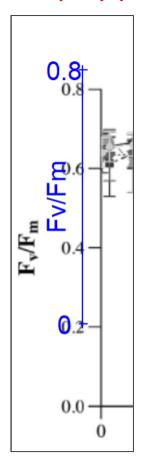
mean_error

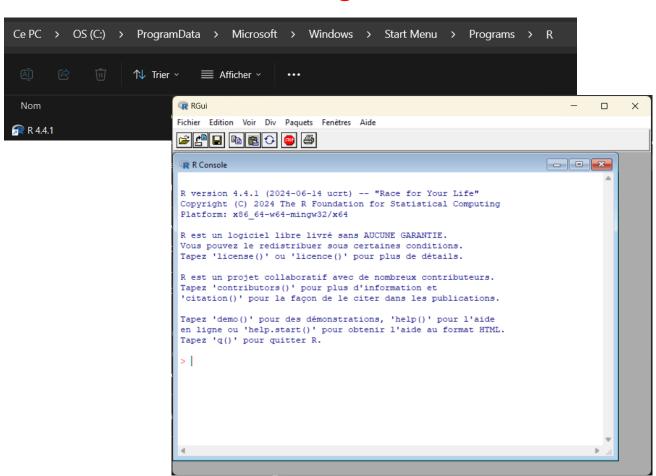
mean_error

scatterplot

0.415 20 0.786 scatterplot

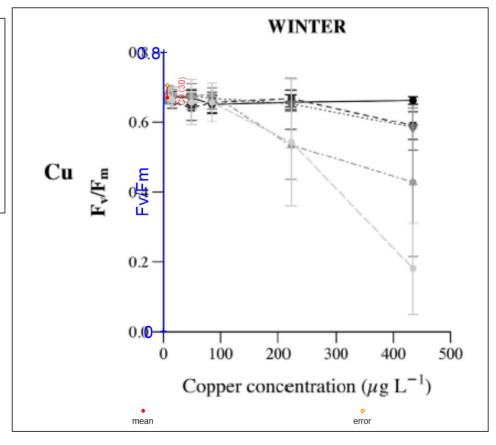
Process as many images at once as needed and of varying types efficiently and quickly. New plots automatically plotted for digitisation


```
> dat <- metaDigitise(dir = "./figs")
Do you want to...
1: Process new images
2: Import existing data
3: Edit existing data
Sélection : 1
Are all plot types Different or the Same? (d/s)
Please specify the plot type as either:
m: Mean and error
b: Box plot
 s: Scatter plot
h: Histogram
**** NEW PLOT ****
mean error and boxplots should be vertically orientated
 I.E. o NOT |-0-|
If they are not then chose flip to correct this.
If figures are wonky, chose rotate.
Otherwise chose continue
Flip, rotate or continue (f/r/c)
```


```
What is the y variable?
Fv/Fm
On the Figure, click IN ORDER:
     y1, y2
   Step 1 ----> Click on known value on v axis - vl
  yl
   Step 2 ---> Click on another known value on v axis - v2
  v2
What is the value of vl ?
What is the value of y2 ?
0.8
Re-calibrate? (y/n)
```


! If display problem -> exit Rstudio -> use Rgui


```
Do you know sample sizes? (y/n)


Y

If there are multiple groups, enter unique group identifiers (otherwise press enter)
Group identifier:
CO

Group sample size:
30

Click on Error Bar, followed by the Mean

Add group, Edit Group, Delete group or Finish plot? (a/e/d/f)
```

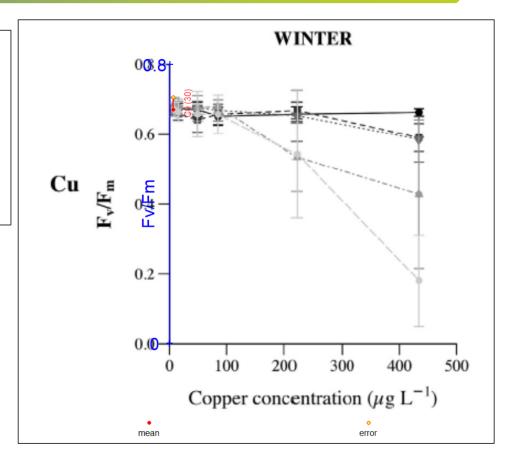


```
Do you know sample sizes? (y/n)

Y

If there are multiple groups, enter unique group identifiers (otherwise press enter)
Group identifier:
CO

Group sample size:
30


Click on Error Bar, followed by the Mean

Add group, Edit Group, Delete group or Finish plot? (a/e/d/f)
```

```
Add group, Edit Group, Delete group or Finish plot? (a/e/d/f) f

Type of error (se, CI95, sd): sd

Do you want continue: 1 plots out of 2 plots remaining (y/n)
```



```
Do you know sample sizes? (y/n)

Y

If there are multiple groups, enter unique group identifiers (otherwise press enter)
Group identifier:

CO

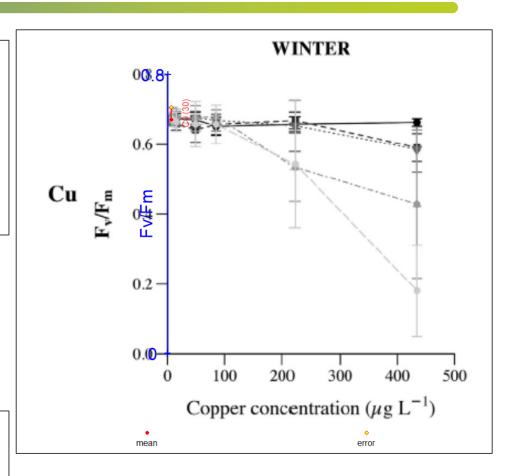
Group sample size:
30

Click on Error Bar, followed by the Mean

Add group, Edit Group, Delete group or Finish plot? (a/e/d/f)
```

```
Add group, Edit Group, Delete group or Finish plot? (a/e/d/f) f

Type of error (se, CI95, sd):
sd


Do you want continue: 1 plots out of 2 plots remaining (y/n)
```

```
Add group, Edit Group, Delete group or Finish plot? (a/e/d/f)

f

Type of error (se, CI95, sd):
sd

Congratulations! Looks like you have finished digitising all figures in this directory.
```


Question: estimate the effects of chemicals on the photosynthetic performance (maximum quantum yield, Fv/Fm) of tropical reef-building corals

A **study** = combination of a taxon \times an exposure \times an outcome

A case study = one tested concentration-duration

Effect size = mean standardized difference

$$d = \frac{\overline{Y_1} - \overline{Y_2}}{\sqrt{\frac{(n_1 - 1)(s_1^2) + (n_2 - 1)(s_2^2)}{(n_1 + n_2) - 2}}} J,$$

where
$$J = 1 - \frac{3}{4(n_1 + n_2 - 2) - 1}$$

If monitoring over time, extraction of the longest duration of exposure

Files:

```
data_TD.xlsx (sheet 5)
```

Hedouin2016_Improving.pdf

Hedouin2016_Fig8_SummerCu.png, Hedouin2018_Fig8_WinterCu.png (folder « figs »)

Exercise: extract data using metaDigitise (15-20 min)

Prepare the figures with the data to be extracted (screenshot -> .png), put them in a "figs" folder in the "TD" working directory

```
In R: Install & load metaDigitise package library(metaDigitise)
```

```
Set working directory setwd("~/TD/TD_extraction")
dat <- metaDigitise(dir = "./figs")</pre>
```

```
write.csv2(dat, "extracted_data_TD_metadigitise.csv", quote=F, row.names=F)
```

Extract data into data_TD.xlsx (sheet 5)

Hédouin et al. 2016

Table 1 Nominal versus measured concentrations (mean \pm standard deviation, n = 3) of Cu and Pb (μ g L $^{-1}$) used in the toxicity experiments for the adult *Pocillopora damicornis* corals.

Condition	Concentra	tion (μg L ⁻¹)	
	Nominal	Measured – summer	Measured-Winter
Cu			
Control − C ₀	0	1.5 ± 0.6	8.1 ± 0.6
Concentration $1 - C_1$	10	12.6 ± 2.8	15.0 ± 1.3
Concentration 2 − C ₂	50	49.2 ± 11.3	48.9 ± 5.0
Concentration $3 - C_3$	100	90.0 ± 15.3	85.2 ± 16.2
Concentration 4 - C ₄	250	206 ± 33.6	222 ± 29.4
Concentration 5 - C ₅	500	378 ± 49.8	434 ± 72.6
Pb			
Control- C ₀	0	0.5 ± 0.7	1.9 ± 3.0
Concentration $1 - C_1$	80	75.6 ± 4.2	67.9 ± 7.8
Concentration $2 - C_2$	160	151 ± 8.2	133 ± 23.1
Concentration 3 - C ₃	320	308 ± 10.0	316 ± 30.6
Concentration 4 - C ₄	640	604 ± 37.1	605 ± 34.3
Concentration 5 - C ₅	1280	1200 ± 92.2	1138 ± 57.4

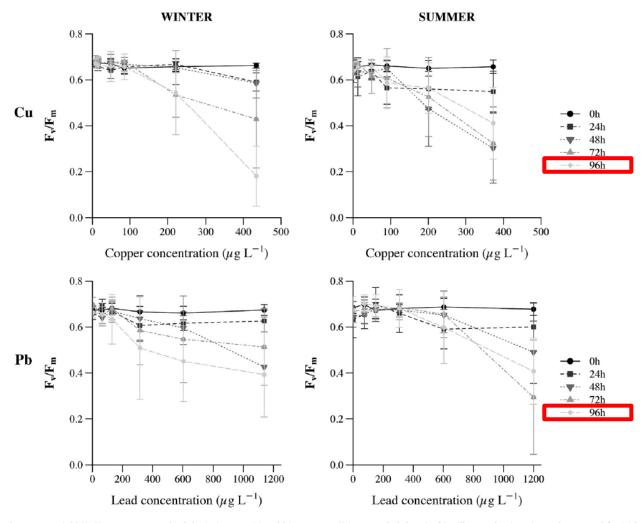
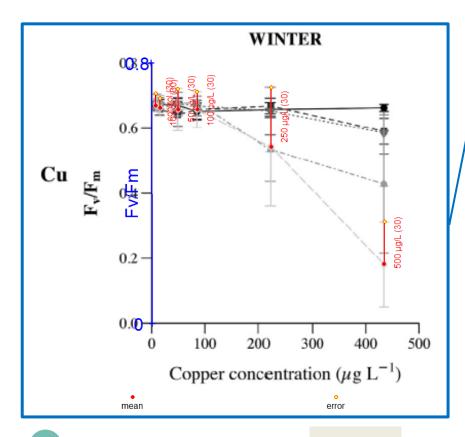


Fig. 8. Dark-adapted quantum yield (F_v/F_m , mean \pm standard deviation, n = 30 nubbins per condition, -pooled data-) of *Pocillopora damicornis* corals exposed for 96 h to a range of dissolved Cu and Pb concentration in the summer and winter seasons.


N = 30

Hédouin et al. 2016

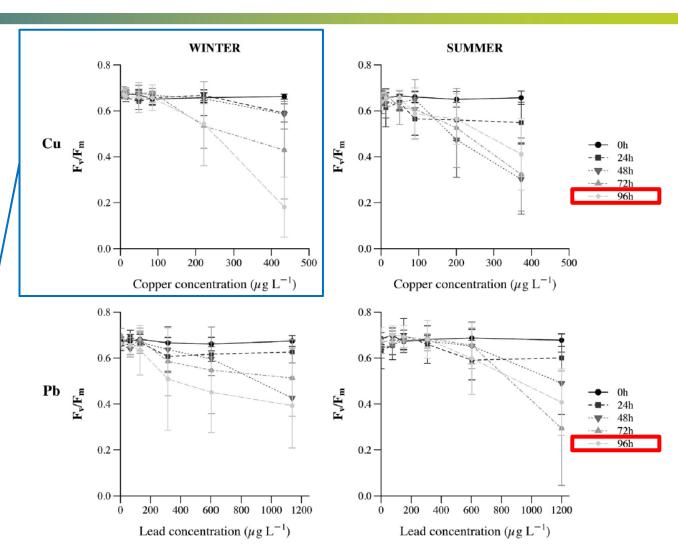


Fig. 8. Dark-adapted quantum yield (F_v/F_m , mean \pm standard deviation, n = 30 nubbins per condition, -pooled data-) of *Pocillopora damicornis* corals exposed for 96 h to a range of dissolved Cu and Pb concentration in the summer and winter seasons.

22

N = 30 SD

Hédouin et al. 2016

> dat filename variable group id se error type plot type Fv/Fm Hedouin2016 Fig8 SummerCu.png CO 0.6396917 0.04007707 30 NA 0.007317039 sd mean error Hedouin2016 Fig8 SummerCu.png Fv/Fm C1 0.6551060 0.03699422 30 NA 0.006754190 sd mean error Hedouin2016 Fig8 SummerCu.png Fv/Fm sd mean error C2 0.6612717 0.02928709 30 NA 0.005347067 Hedouin2016 Fig8 SummerCu.png Fv/Fm C3 0.5872832 0.11560694 30 NA 0.021106842 sd mean error Hedouin2016 Fig8 SummerCu.png Fv/Fm C4 0.5657033 0.10944123 30 NA 0.019981144 sd mean error Hedouin2016 Fig8 SummerCu.png Fv/Fm C5 0.4100193 0.15722543 30 NA 0.028705306 sd mean error Hedouin2018 Fig8 WinterCu.png Fv/Fm CO 0.6707692 0.03538462 30 NA 0.006460317 sd mean error Hedouin2018 Fig8 WinterCu.png Fv/Fm C1 0.6646154 0.02769231 30 NA 0.005055901 sd mean error Hedouin2018 Fig8 WinterCu.png Fv/Fm C2 0.6584615 0.06307692 30 NA 0.011516218 sd mean error 10 Hedouin2018 Fig8 WinterCu.png Fv/Fm C3 0.6553846 0.05538462 30 NA 0.010111801 sd mean error 11 Hedouin2018 Fig8 WinterCu.png Fv/Fm C4 0.5400000 0.18615385 30 NA 0.033986887 sd mean error 12 Hedouin2018 Fig8 WinterCu.png Fv/Fm C5 0.1769231 0.13230769 30 NA 0.024155969 sd mean error

	filename	variable	group	id	mean		sd	n	r	se	error_typ	e e	plot	type
1	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		C0	0.6396917	0.0	4007707	30	NA	0.007317039		sd n	nean_e	error
2	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		Cl	0.6551060	0.0	3699422	30	NA	0.006754190		sd n	nean_e	error
3	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		C2	0.6612717	0.0	2928709	30	NA	0.005347067	5	sd n	nean_e	error
4	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		C3	0.5872832	0.1	1560694	30	NA	0.021106842	5	sd n	nean_e	error
5	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		C4	0.5657033	0.1	0944123	30	NA	0.019981144	5	sd n	nean_e	error
6	Hedouin2016 Fig8 SummerCu.png	Fv/Fm		C5	0.4100193	0.1	5722543	30	NA	0.028705306		sd n	nean e	error
7	Hedouin2018 Fig8 WinterCu.png	Fv/Fm		C0	0.6707692	0.0	3538462	30	ΝA	0.006460317	5	sd n	nean_e	error
8	Hedouin2018 Fig8 WinterCu.png	Fv/Fm		Cl	0.6646154	0.0	2769231	30	NA	0.005055901	2	sd n	nean e	error
9	Hedouin2018 Fig8 WinterCu.png	Fv/Fm		C2	0.6584615	0.0	6307692	30	NA	0.011516218	2	sd n	nean_e	error
10	Hedouin2018 Fig8 WinterCu.png	Fv/Fm		C3	0.6553846	0.0	5538462	30	NA	0.010111801	2	sd n	nean e	error
11	Hedouin2018 Fig8 WinterCu.png	Fv/Fm		C4	0.5400000	0.1	8615385	30	NA	0.033986887	5	sd n	nean_e	error
12	Medouin2018 Fig8 WinterCu.png	Fv/Fm		C5	0.1769231	0.1	3230769	30	NA	0.024155969	2	sd n	nean e	error

L	M	N	0	Р	Q	R	\$	Т	U	V	W	X	γ	Z	AA
Concentration_nom	Concentration_eff	Duration	Measured_outcome	ID_experiment	ID_case	N_c	Mean_c	Type_variati	c Variation_c	N_t	Mean_t	Type_variation	Variation_t	Method_ext	Source
10 μg/L	12.6 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	1	30	0,63969171	sd	0,04007707	30	0,65510597	sd	0,03699422	Figure	Figure 8
50 μg/L	49.2 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	2	30	0,63969171	sd	0,04007707	30	0,66127168	sd	0,02928709	Figure	Figure 8
100 μg/L	90 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	3	30	0,63969171	sd	0,04007707	30	0,58728324	sd	0,11560694	Figure	Figure 8
250 μg/L	206 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	4	30	0,63969171	sd	0,04007707	30	0,56570328	sd	0,10944123	Figure	Figure 8
500 μg/L	378 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	5	30	0,63969171	sd	0,04007707	30	0,41001927	sd	0,15722543	Figure	Figure 8
10 μg/L	15 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	6	30	0,67076923	sd	0,03538462	30	0,66461538	sd	0,02769231	Figure	Figure 8
50 μg/L	48.9 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	7	30	0,67076923	sd	0,03538462	30	0,65846154	sd	0,06307692	Figure	Figure 8
100 μg/L	85.2 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	8	30	0,67076923	sd	0,03538462	30	0,65538462	sd	0,05538462	Figure	Figure 8
250 μg/L	222 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	9	30	0,67076923	sd	0,03538462	30	0,54	sd	0,18615385	Figure	Figure 8
500 μg/L	434 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	10	30	0,67076923	sd	0,03538462	30	0,17692308	sd	0,13230769	Figure	Figure 8