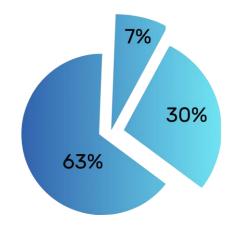


Biodiversity knowledge synthesis: an introduction to meta-analyses and systematic reviews

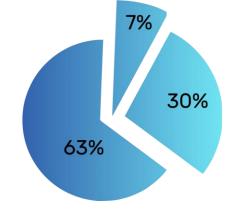
Metadata visualisation

Léa Terray & Romain Sordello Cellule Cartes et Revues systématiques, PatriNat



Objective

population	exposition	outcome	study_context	study_design	research_lab_location	study_location
NA:review-metanalysis	A:review-metanalysis NA:review-metanalysis		NA:review-metanalysis NA:review-metanalysis		NA:review-metanalysis	NA:review-metanalysis
Birds	Urban	Communication	In-situ	Observational	USA	USA
NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis
NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysi
Birds	Industrial	Behaviour	In-situ	Experimental	POL	POL
NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysi
Birds	Transportation	Behaviour	In-situ	Experimental	CHN	CHN
Mammals	Transportation	Behaviour	Modeling	NA	CAN	NA
hibians	Urban Transportation	Communication	In-situ	Observational	ARG	ARG
	Transportation	Reproduction	In-situ	Experimental	USA	USA
	Transportation	Communication	In-situ	Experimental	COL	COL
	Transportation	Ecosystem	In-situ	Observational	CHN	CHN
	Urban	Space use	In-situ	Observational	USA	USA
halysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysi
	Recreational	Behaviour	In-situ	Observational	GBR	GBR
-	Urban	Communication	In-situ	Observational	MEX	MEX
	Urban	Ecosystem	In-situ	Observational	CHN	CHN
	Recreational	Behaviour	Ex-situ	Observational	GBR	IRL(zoo)
	Industrial	Space use	In-situ	Observational	CAN	CAN
ts Amphibiar	Transportation Urban R	Ecosystem	In-situ	Observational	CHN	CHN
	Transportation	Communication	In-situ	Observational	USA	USA
	Recreational	Behaviour	In-situ	Observational	AUS	AUS
	Urban	Reproduction	In-situ	Observational	CHN	CHN
	Recreational	Behaviour	Ex-situ	Observational	AUS	AUS(zoo)



Objective

population	exposition	outcome	study_context	study_design	research_lab_location	study_location
NA:review-metanalysis	review-metanalysis NA:review-metanalysis NA		NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalys
Birds	Urban	Communication	In-situ	Observational	USA	USA
NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalys
NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalys
Birds	Industrial	Behaviour	In-situ	Experimental	POL	POL
NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalys
Birds	Transportation	Behaviour	In-situ	Experimental	CHN	CHN
Mammals	Transportation	Behaviour	Modeling	NA	CAN	NA
hibians	Urban Transportation	Communication	In-situ	Observational	ARG	ARG
	Transportation	Reproduction	In-situ	Experimental	USA	USA
	Transportation	Communication	In-situ	Experimental	COL	COL
	Transportation	Ecosystem	In-situ	Observational	CHN	CHN
	Urban	Space use	In-situ	Observational	USA	USA
halysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalysis	NA:review-metanalys
	Recreational	Behaviour	In-situ	Observational	GBR	GBR
-	Urban	Communication	In-situ	Observational	MEX	MEX
	Urban	Ecosystem	In-situ	Observational	CHN	CHN
	Recreational	Behaviour	Ex-situ	Observational	GBR	IRL(zoo)
	Industrial	Space use	In-situ	Observational	CAN	CAN
Amphibiar	:Transportation Urban Re	Ecosystem	In-situ	Observational	CHN	CHN
	Transportation	Communication	In-situ	Observational	USA	USA
	Recreational	Behaviour	In-situ	Observational	AUS	AUS
	Urban	Reproduction	In-situ	Observational	CHN	CHN
	Recreational	Behaviour	Ex-situ	Observational	AUS	AUS(zoo)

All the features mentioned in the systematic overview protocol must be represented

EEJ guidelines

Mapping the quantity of studies relevant to the question

Present here a figure or a database, showing how the relevant literature is organized (categories, coding...) according to transparent, replicable criteria.

Mapping the quality of studies relevant to the question

The map should provide some preliminary estimate of the quality of the available evidence. This may involve providing a description of the design of each study.

The visualizations presented should make it easier to navigate through the collected literature and identify avenues for future systematic reviews.

Must be identified and described:

Knowledge gaps, unrepresented or underrepresented subtopics that warrant further primary research.

Knowledge clusters, well-represented subtopics that are amenable to full synthesis via systematic review.

Which data should be represented?

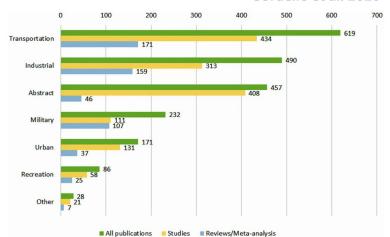
Key data

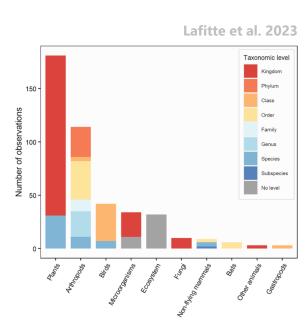
- Bibliometric data: chronological distribution of publications, locality of studies, documents types, documents contents
- Population
- Exposition
- Outcomes

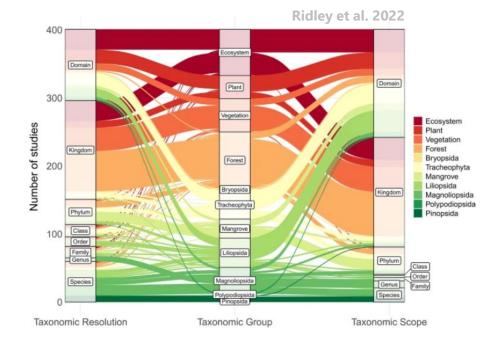
Data related to study design

- observational/experimental
- types of experimental protocols
- in situ/ex situ

etc


Key data highlighting strong results





Endless possibilities

42 5% 23 3% 30 3° 16 2% 10	1%
	Document type Books
	Book chapters
	Conference objects
	Journal articles
	Others
	Reports
	Theses
738 86%	

Terray		

	Abstract	Industrial	Transportation	Military	Urban	Recreation	Other
Mammals	181	145	145	73	12	27	11
Fishes	86	104	97	14	2	11	5
Birds	74	60	142	25	109	20	3
Amphibians	23	4	31	0	5	2	0
Insects	19	2	10	0	2	2	1
Crustaceans	9	18	8	1	0	0	2
Mollusks	9	9	6	1	0	0	0
Other invertebrates	2	3	5	0	0	0	0
Reptiles	1	7	7	3	0	1	0
Other vertebrates	1	1	2	0	0	2	0
Arachnids	1	1	1	0	1	0	0

6

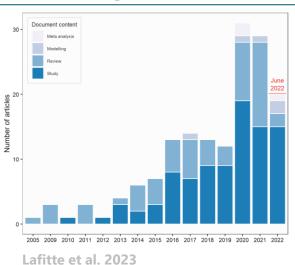
Sordello et al. 2020

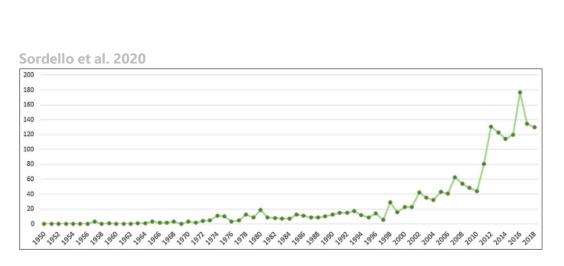
Endless possibilities

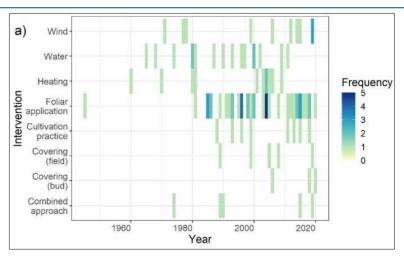
To sort out the possibilities, you need to:

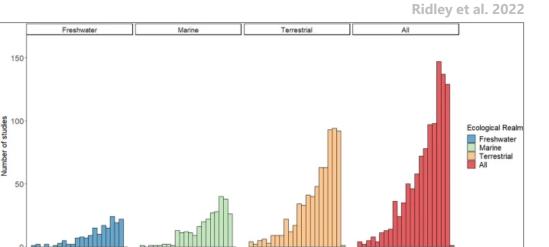
Choose the right data to represent

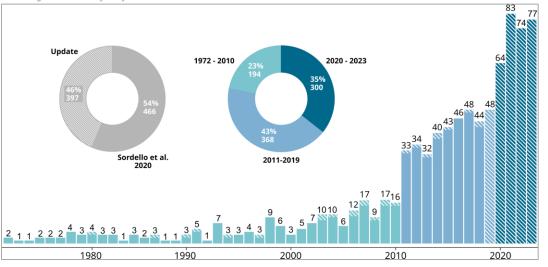
The data chosen must be the most relevant, and present both an overview of the corpus and the data that responds specifically to the question(s) on the map.


Choose the right visualisations

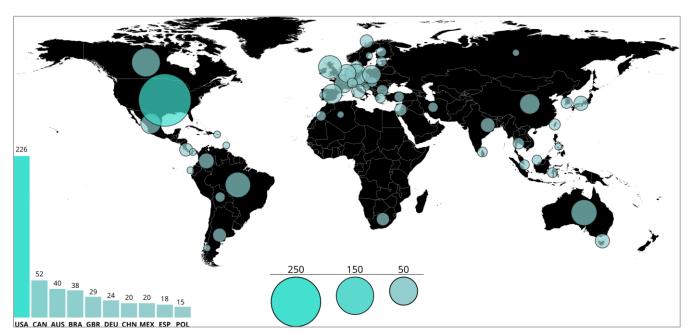

The visualisations chosen must be the most appropriate for representing the data selected

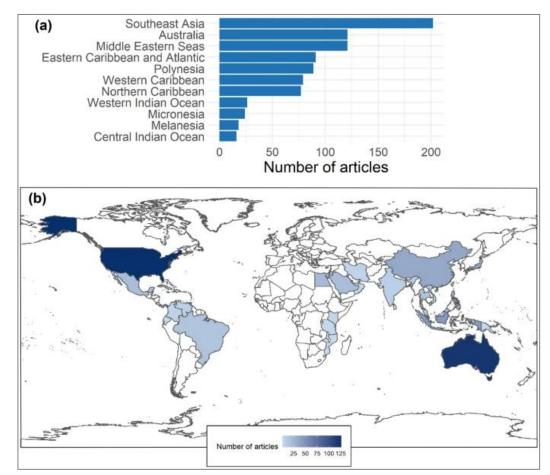



Chronological distribution of studies



Drepper et al. 2020



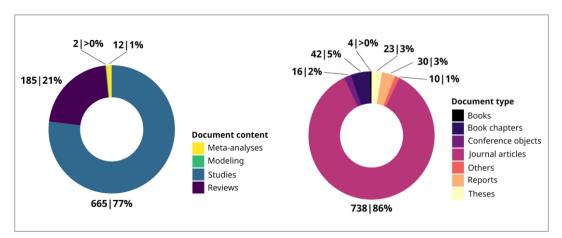


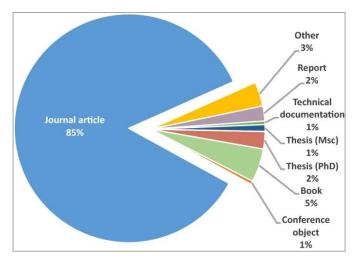
Spatial distribution of studies

Terray et al. in prep

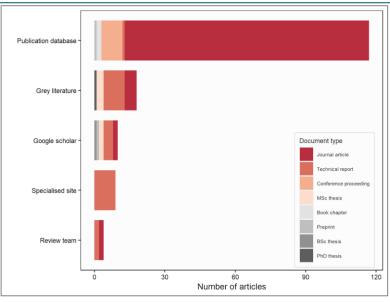
Spatial distribution of studies

TreeMap, online tool: https://online.visual-paradigm.com/

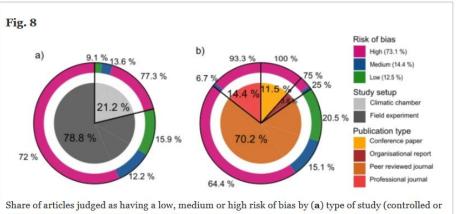

Sordello et al. 2023



Documents types and contents



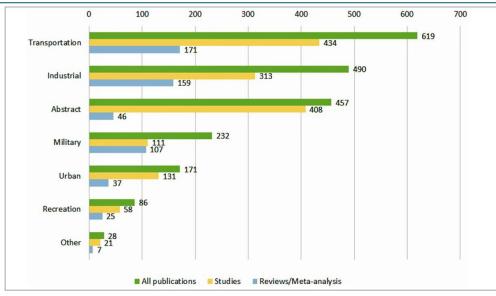
Terray et al. in prep

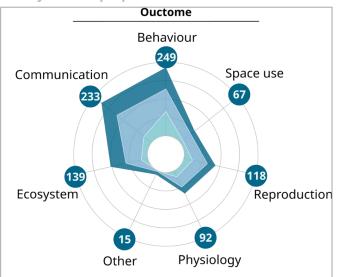


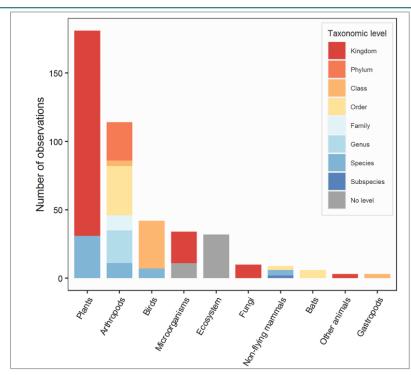
Langridge et al. 2021

Drepper et al. 2022

Share of articles judged as having a low, medium or high risk of bias by (a) type of study (controlled or field environments) and (b) type of publication


11


PEO elements

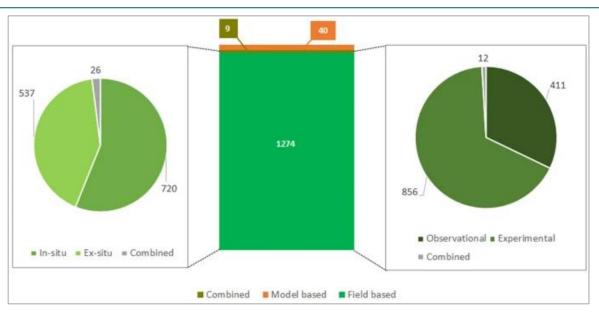

Population, exposition, outcomes

Sordello et al. 2020

Terray et al. in prep

Lafitte et al. 2023

Context and methodology


1972

100

Proportion

2020

Ex-situ In-situ

Sordello et al. 2020

2011 2019 1972 2010 2020 2023 2023 2019 2010 2% 100 33% 38% 46% 46% Proportion 77% 76% 67% 62% Study context 54% 54% Study design Modeled noise

Terray et al. in prep

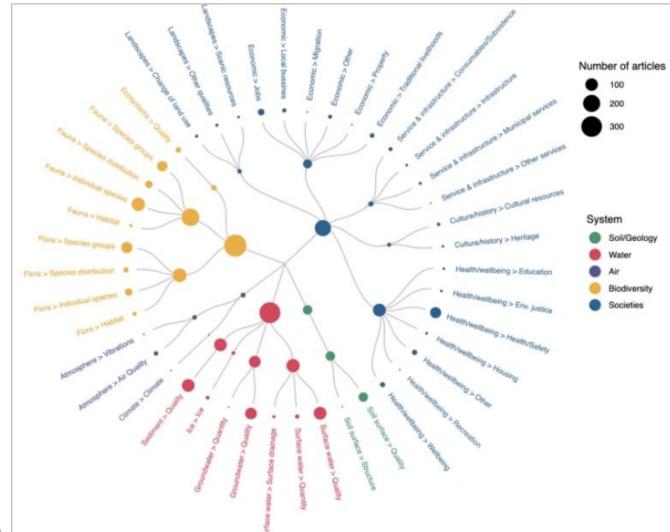
Experimental

Observational

2011

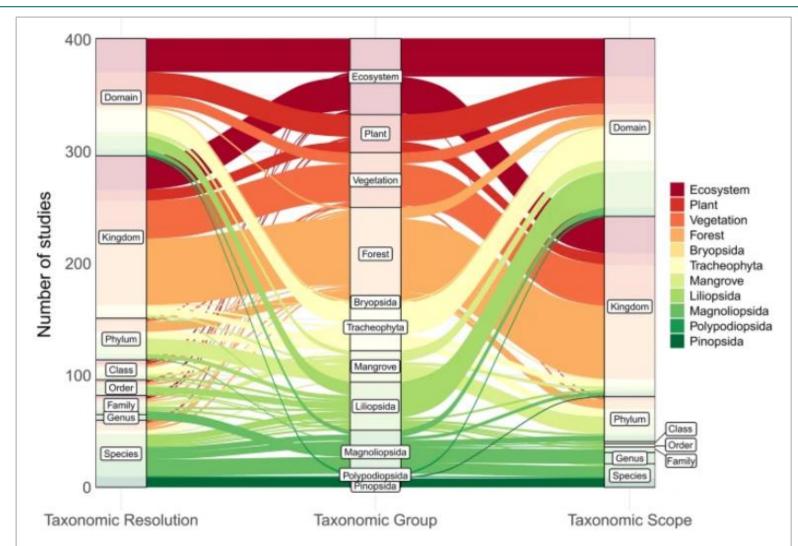
Context and methodology

From: Evidence on the impacts of chemicals arising from human activity on tropical reef-building corals; a systematic map


Таха	Total		Experime	ntal	Observation	Observational		
Pocillopora damicornis	719	(9.1%)	546	(14.2%)	173	(4.2%)		
Stylophora pistillata	603	(7.6%)	537	(14%)	66	(1.6%)		
Coral	555	(7%)	33	(0.9%)	522	(12.8%)		
Porites	255	(3.2%)	18	(0.5%)	237	(5.8%)		
Scleractinia	218	(2.7%)	20	(0.5%)	198	(4.8%)		
Acropora tenuis	207	(2.6%)	148	(3.8%)	59	(1.4%)		
Acropora muricata	199	(2.5%)	154	(4%)	45	(1.1%)		
Porites astreoides	197	(2.5%)	109	(2.8%)	88	(2.2%)		
Porites lutea	190	(2.4%)	32	(0.8%)	158	(3.9%)		
Acropora	184	(2.3%)	58	(1.5%)	126	(3.1%)		
Orbicella annularis	169	(2.1%)	101	(2.6%)	68	(1.7%)		
Acropora cervicornis	152	(1.9%)	146	(3.8%)	6	(0.1%)		
Acropora millepora	149	(1.9%)	140	(3.6%)	9	(0.2%)		
Siderastrea siderea	125	(1.6%)	64	(1.7%)	61	(1.5%)		
Pocillopora verrucosa	122	(1.5%)	59	(1.5%)	63	(1.5%)		
Porites porites	110	(1.4%)	89	(2.3%)	21	(0.5%)		
Porites lobata	105	(1.3%)	34	(0.9%)	71	(1.7%)		
Turbinaria reniformis	101	(1.3%)	100	(2.6%)	1	(0%)		
Acropora valida	100	(1.3%)	34	(0.9%)	66	(1.6%)		
Orbicella faveolata	99	(1.2%)	49	(1.3%)	50	(1.2%)		

Complex representations

Dendrogram



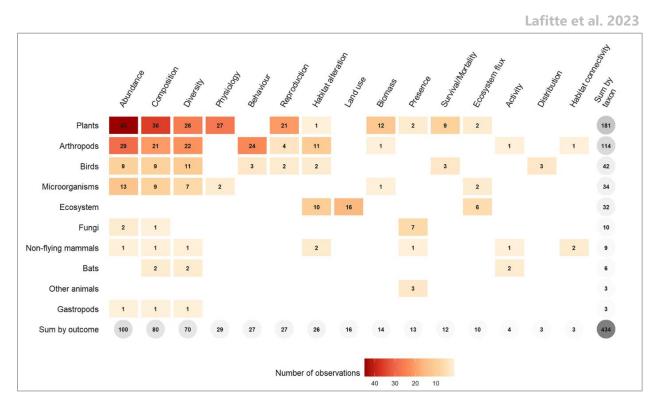
Complex representations

Taxonomic tree

The purpose of the map is to identify:

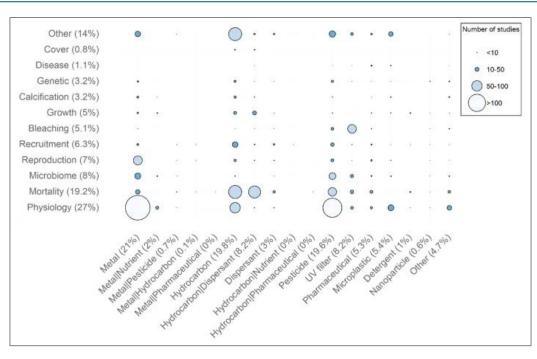
- Knowledge gaps to prioritise future primary studies (calls for projects, for example)
- Knowledge clusters for future systematic reviews

- Different methods exist:
 - Based on the volumes of the P, E, O elements
 - Based on functional grouping (design types, etc.)
 - **—** ...
- Heatmap are particularly relevant
- The process can and should extend to identifying clear issues that can be addressed in reviews



Crossing of PEO elements

Taxonomic kingdom X Programme motivation	Intervention ty								
	Intro+suppl	Introduction	Reintro+suppl	Reintroduction	Supplementation	Unknown	Tota		
Animalia	6	6	176	158	158	182	68		
Conservation (improving status of focal species)	6	4	158	123	110	88	48		
Experimental or trial translocations		1	4	12	13	16	4		
Human-wildlife conflict				5	11	17	3		
Rewilding (restoring natural functions)			3	3		2			
Unknown		1	9	11	9	33	6		
Wildlife rescue operation			2	4	15	26	4		
Fungi				4	3				
Wildlife rescue operation				4	3				
Plantae		4	10	11	41	82	14		
Conservation (improving status of focal species)		3	10	9	39	72	133		
Experimental or trial translocations		1		2	2	5	10		
Unknown						1			
Wildlife rescue operation						4			
Total	6	10	186	173	202	264	841		


Langridge et al. 2021

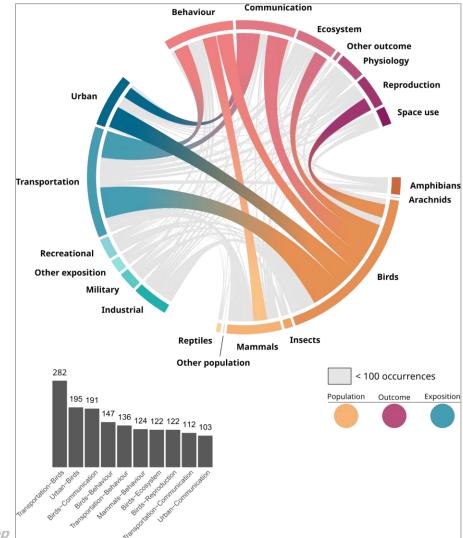
Crossing of PEO elements

Ouédraogo et al. 2021

Sordello et al. 2020

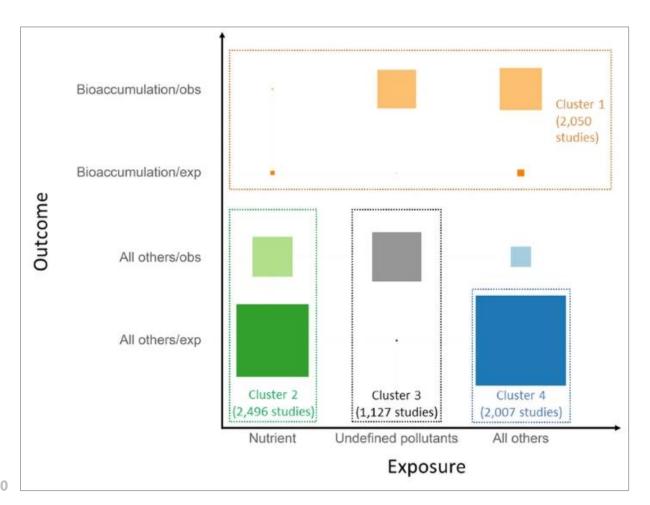
From: Evidence of the impact of noise pollution on biodiversity: a systematic map

Cluster	Number of studies	Combinations			
		Р	E	0	
Behavioural impacts of noise on mammals	355	х		х	
Impacts of transportation noise on behaviour	216		х	х	
Impacts of abstract noises on biophysiology	208		х	х	
Impacts of abstract noise on behaviour	202		х	х	
Impacts of industrial noises on behaviour	187		x	х	
Impacts of abstract noise on mammals	181	х	х		
Biophysiological impacts of noise on mammals	181	х		х	
Behavioural impacts of noise on fishes	159	х		х	
Biophysiological impacts of noise on fishes	149	х		х	
Impacts of industrial noise on mammals	145	х	х		
Impacts of transportation noise on mammals	145	х	х		
Impacts of transportation noise on birds	142	х	х		



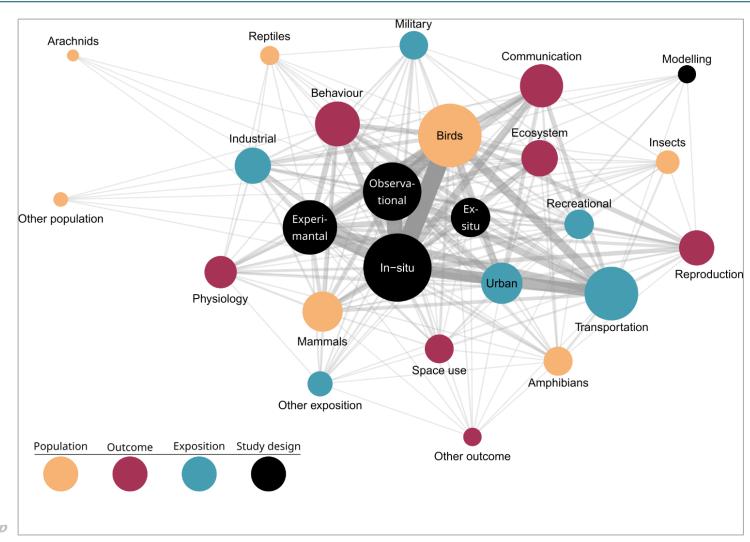
Crossing of PEO elements

→ The 3 elements presented on a single figure



Clusters on more than 2 criteria

- Outcome
- Exposure
- Study design



Clusters on more than 2 criteria

- Outcome
- Exposure
- Population
- Study design
- Study context

Representing existing syntheses

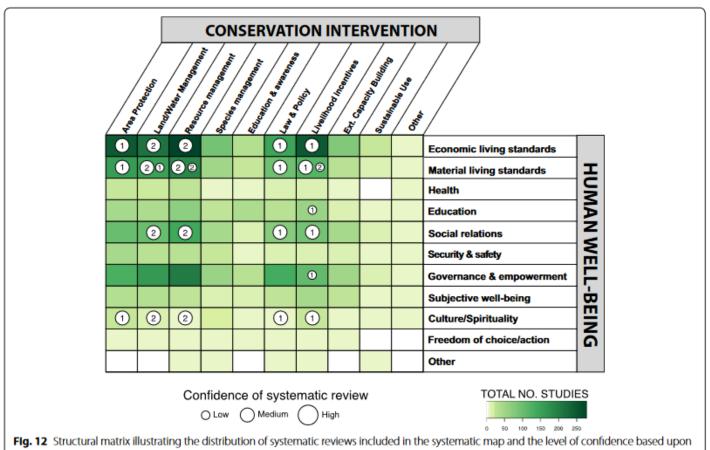
Compare existing syntheses to our map

From: Existing evidence on the outcomes of wildlife translocations in protected areas: a systematic map

Citation	Scope of review	Nature of synthesis	Search databases	No. of other literature sources	Publication data range of included articles	No. of included publications
Our map (translocation synthesis)	P: all biodiversity worldwide I: reintroductions, introductions, Supplementations C: protected areas	Systematic map	2 databases: WOS, SCOPUS	12 (+2 grey literature calls)	1969 to 2020	498
Fischer J, Lindenmayer DB. An assessment of the published results of animal relocations. <i>Biological Conservation</i> . 2000; 96: 1–11	P: animals worldwide I: reintroductions, supplementations, introductions	Map-like	0 databases	A search for articles across 12 major journals only	1979 to 1998	124
Hale SL, Koprowski JL. Ecosystem-level effects of keystone species reintroduction: a literature review. <i>Restoration Ecology</i> . 2018; 26: 439–45	P: key-stone species I: reintroductions only	Map-like	1 database: WOS	0	1995 to 2016	69
Tetzlaff SJ, Sperry JH, DeGregorio BA. Effects of antipredator training, environmental enrichment, and soft release on wildlife translocations: a review and meta-analysis. <i>Biol Cons.</i> 2019; 236: 324–31	P: all biodiversity ^a l: translocations ^a C: antipredator training, soft release, or environmental Enrichment	Meta- analysis	0 databases (Search in google scholar only)	0	1981 to 2018	41
Resende, P., Viana-Junior, A., Young, R., Azevedo, C., 2020. A global review of animal translocation programs. <i>Anim. Biodivers</i> . Conserv. 221–232. https://doi.org/10.32800/abc.2020.43.0221	P: animals I: introduction, reintroduction, translocations ^a	Map-like	2 databases: WOS, SCOPUS	1	1986 to 2017	145

P population, I interventions, C context

^aMethods unclear and exclusion criteria difficult to ascertain. The first line in italics corresponds to this map



Representing existing syntheses

Add those syntheses to our visualisations

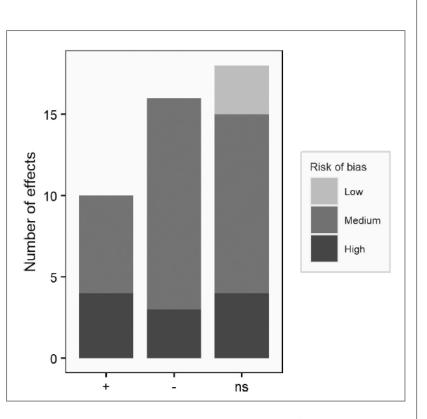
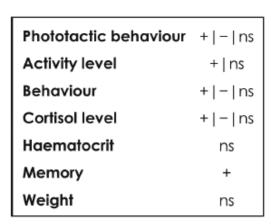
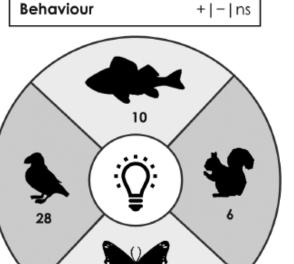


Fig. 12 Structural matrix illustrating the distribution of systematic reviews included in the systematic map and the level of confidence based upon reliability of review methodology. *Numbers* within the *circles* indicate the total number of systematic reviews on that particular linkage that fall within different levels of confidence





Narrative synthesis

Lafitte et al. 2022

Phototactic behaviour + | - | ns

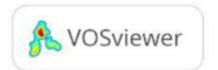
+ | ns

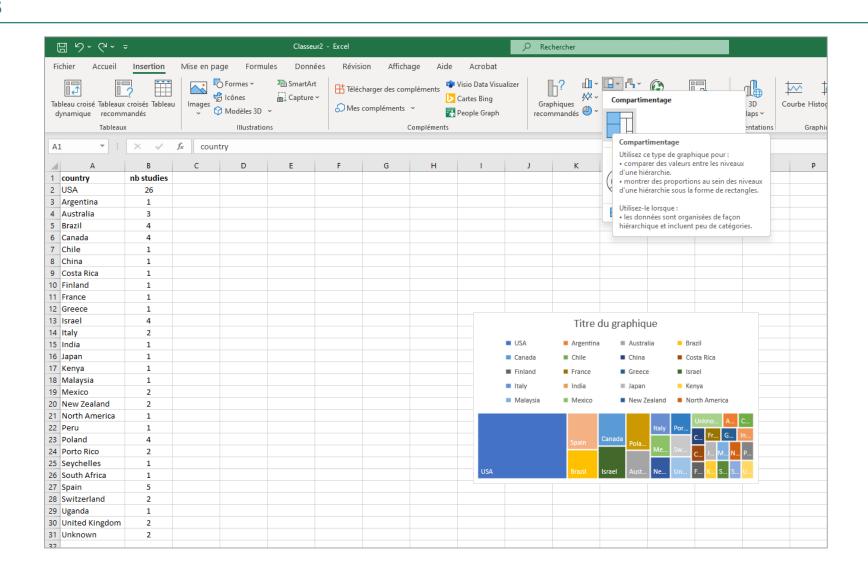
Activity level

Phototactic behaviour ns
Activity level ns
Behaviour Neuronal activity + | Ocular physiology ns

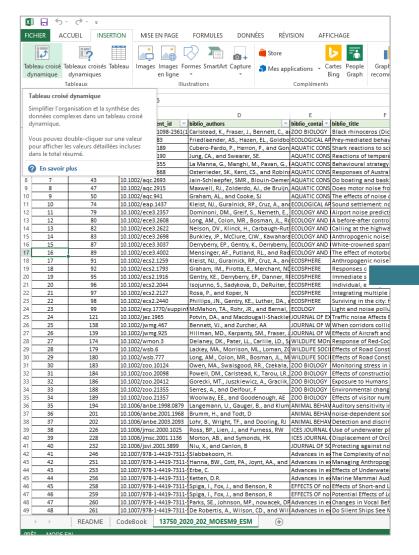
Phototactic behaviour + |-| ns

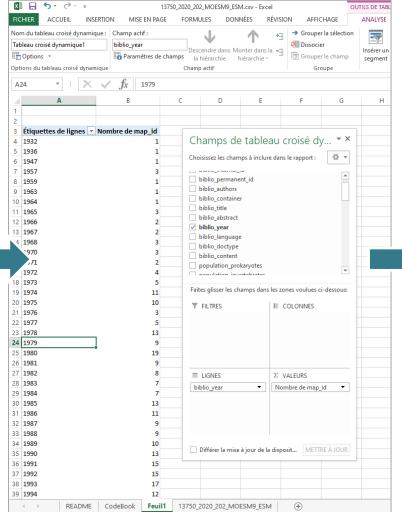
Figure 7. Summary of results for the four main studied taxonomic classes. '+' flashing light increases the outcome compared to continuous light, '-' flashing light decreases the outcome compared to continuous light, 'ns' no significant effect. For clarity, the two observations on plankton phototactic behaviour are not shown but were both found to be non-significant.

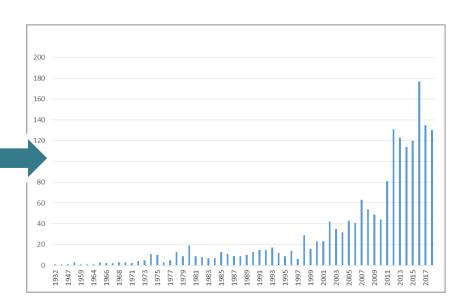




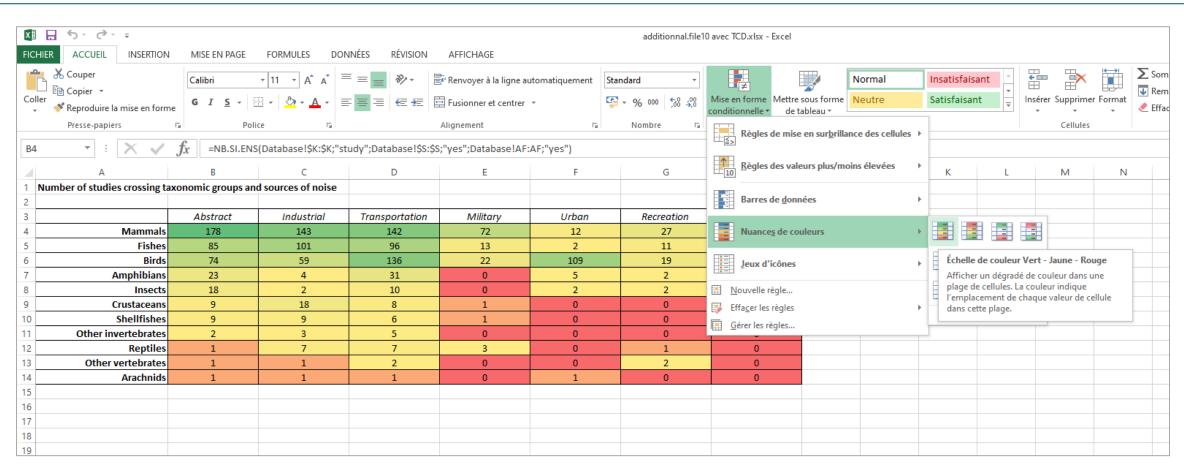
Excel: TreeMaps

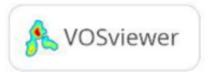




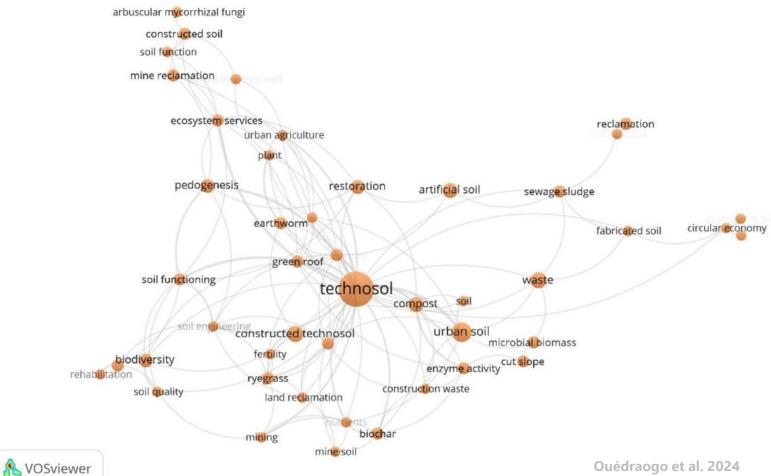


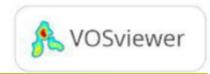
Excel: Tableau croisés dynamiques



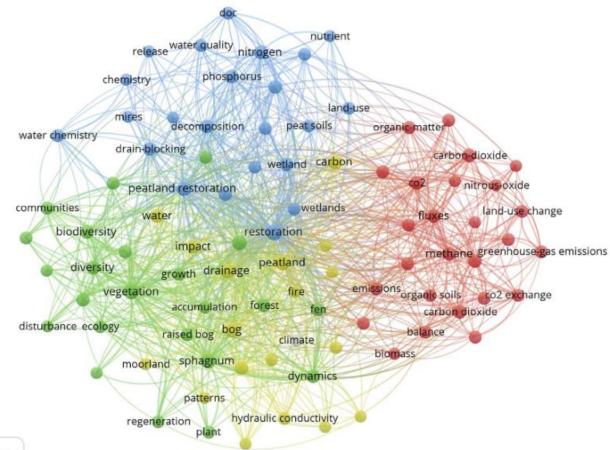


Excel: Heatmaps

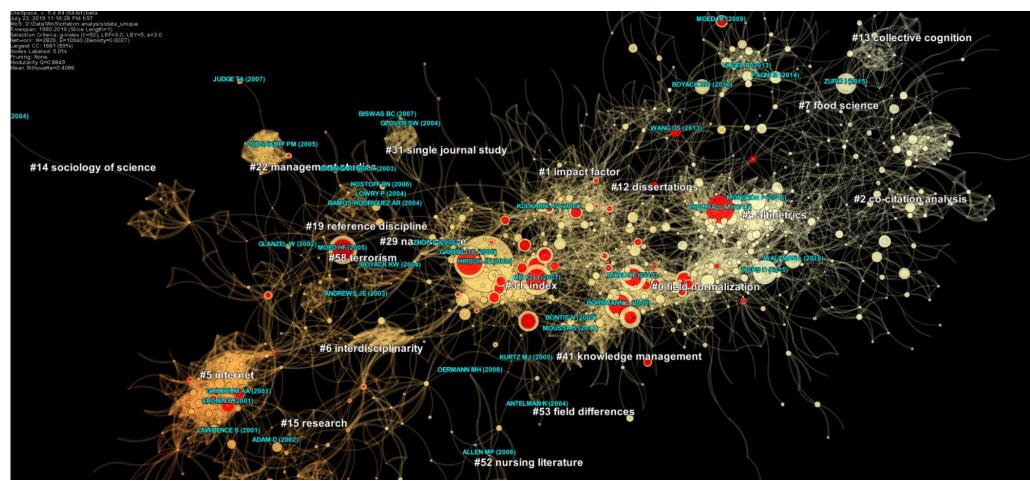




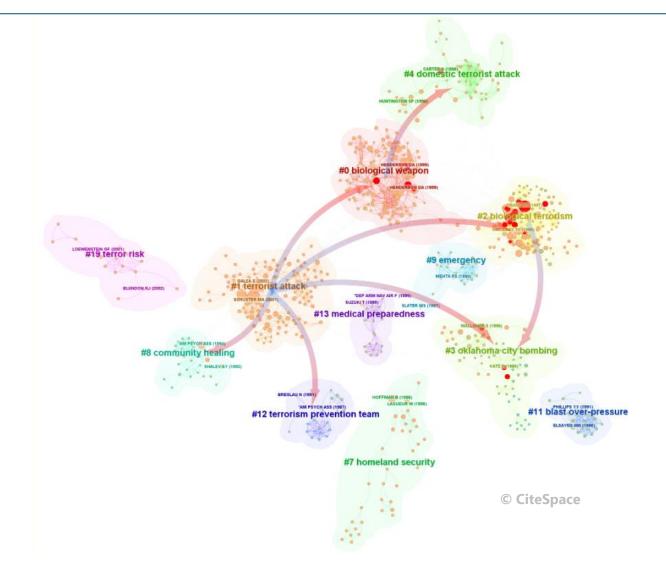
VOSviewer



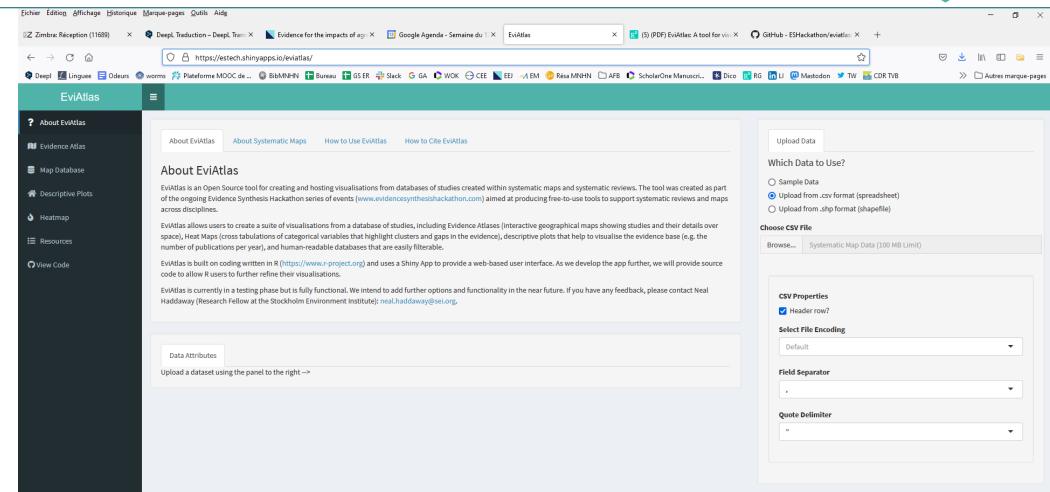
VOSviewer



CiteSpace



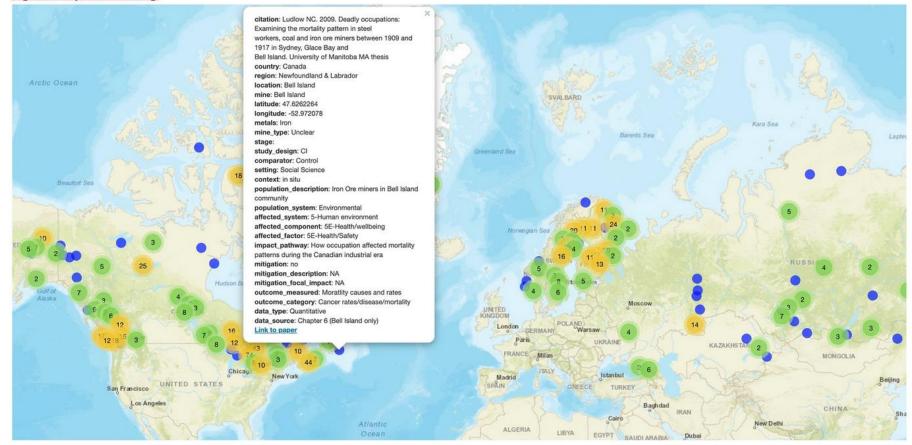
CiteSpace



EviAtlas

EviAtlas

EviAtlas	≡													
? About EviAtlas	Show	V 10	→ entries										Search:	
№ Evidence Atlas		map_id. ↑	biblio_internal_id_ ↑	biblio_permanent_id	biblio_authors†	biblio_container.	biblio_title #	biblio_abstract. ↑	biblio_year	biblio_language 1	biblio_doctype	biblio_content†	population_prokaryotes	population_inverte
		A	All	All	All	All	All	All	All	All	All	All	All	All
♠ Descriptive Plots♦ Heatmap	1	1	6	5 10.1002/(SICI)1098-2361(1999)1	Carlstead, K., Fraser, J., Ben	ZOO BIOLOGY	Black rhinoceros (Diceros bico	The captive population of blac	19	999 en	journal article	study	no	no
∷ Resources	2	2	9	10.1002/15-0783	Friedlaender, AS., Hazen, EL.,	ECOLOGICAL APPLICATIONS	Prey- mediated behavioral respo	Behavioral response studies pr	20)16 en	journal article	study	no	no
	3	3	34	10.1002/aqc.1189	Cubero-Pardo, P., Herron, P.,	AQUATIC CONSERVATION- MARINE AN	Shark reactions to scuba diver	1. Worldwide, there are concer	20	011 en	journal article	study	no	no
	4	4	35	5 10.1002/aqc.1190	Jung, CA., and Swearer, SE.	AQUATIC CONSERVATION- MARINE AN	Reactions of temperate reef fi	1. Anthropogenic sound as a st	20)11 en	journal article	study	no	no
	5	5	37	7 10.1002/aqc.2355	La Manna, G., Manghi, M., Pava	AQUATIC CONSERVATION- MARINE AN	Behavioural strategy of common	Owing to the increase of boat)13 en	journal article	study	no	no
	6	6	42	2 10.1002/aqc.2668	Osterrieder, SK., Kent, CS., and Robinson, RW	AQUATIC CONSERVATION- MARINE AN	Responses of Australian sea li	1. Tourist- based activities,	20)17 en	journal article	study	no	no
	7	7	43	3 10.1002/aqc.2693	Jain-Schlaepfer, SMR., Blouin	AQUATIC CONSERVATION- MARINE AN	Do boating and basking mix? Th	1. Basking is the primary mech	20	017 en	journal article	study	no	no
26	8	8	47	7 10.1002/aqc.2915	Maxwell, RJ., Zolderdo, AJ., d	AQUATIC CONSERVATION- MARINE AN	Does motor noise from recreati	1. Recreational boating activi	20	018 en	journal article	study	no	no
	9	9	50	10.1002/aqc.941	Graham, AL., and Cooke, SJ	AQUATIC CONSERVATION- MARINE AN	The effects of noise disturban	1. Recreational boating contin	20	008 en	journal article	study	no	no
	10	10	74	10.1002/eap.1437	Kleist, NJ.,	ECOLOGICAL	Sound	Birds breeding in	20	17 en	journal article	study	no	no



EviAtlas

From: Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social—ecological systems in Arctic and boreal regions: a systematic map


Screenshot of the interactive evidence atlas showing the location of all study systems in the 585 included studies across 902 total outcome measures. The popup contains descriptive meta-data and a link to the paper on Google Scholar. The interactive evidence atlas is available here: https://3mkproject.github.io /research.html

EviAtlas

Now it's up to you!

